Benefication maroke O iti-Grade Iron Ore Whaina Mā te tribo-Electric Belt Whakawehe

Tikiake i te PDF

Lucas Rojas Mendoza, ST Taputapu & hangarau, USA
lrojasmendoza@steqtech.com
Frank Hrach, ST Taputapu & hangarau, USA
Kyle Flynn, ST Taputapu & hangarau, USA
Abhishek Gupta, ST Taputapu & hangarau, USA

ST Taputapu & hangarau LLC (STET) Kua whakawhanakehia he pūnaha tukatuka pukapuka e hāngai ana i runga i te wehenga whitiki tribo-hiko e whakarato ana i te ahumahi tukatuka kohuke te tikanga ki te beneficiate rauemi pai ki te hangarau pūngao-pai, me te katoa maroke. In contrast to other electrostatic separation processes that are typically limited to particles >75μm i roto i te rahi, oreore te kaiwehe STET triboelectric whitiki te mo te wehenga o te tino pai (<1μm) ki tika makaka (500μm) matūriki, with very high throughput. The STET tribo-electrostatic technology has been used to process and commercially separate a wide range of industrial minerals and other dry granular powders. Here, bench-scale results are presented on the beneficiation of low-grade Fe ore fines using STET belt separation process. Bench-scale testing demonstrated the capability of the STET technology to simultaneously recover Fe and reject SiO2 from itabirite ore with a D50 of 60µm and ultrafine Fe ore tailings with a D50 of 20µm. The STET technology is presented as an alternative to beneficiate Fe ore fines that could not be successfully treated via traditional flowsheet circuits due to their granulometry and mineralogy.

Kupu Whakataki

Rino ore Ko te wha te tuhaa tino noa i roto i te kirinuku o te whenua [1]. Ko te faufaa ki te maitai ahumahi, me te reira i te rauemi faufaa mō te ao te whanaketanga ōhanga Iron [1-2]. Te rino no hoki whānui whakamahia i roto i te hanga, me te ahumahi o waka [3]. Te nuinga o ngā rauemi ore rino e tito o metamorphosed ngā rino ka maka oati (Bif) i roto i nei kei te kitea te rino i roto i te puka o waikura, waihā me ki te whānuitanga iti pākawa waro [4-5]. He momo ngā o ngā rino ki tirotiro pākawa waro teitei he itabirites dolomitic e ko te hua o te dolomitization me kāhuarautanga o putunga Bif [6]. Ko te nui rawa putunga rino ore i roto i te ao nei e taea te kitea i roto i Ahitereiria, China, Canada, Ukraine, India ko Brazil [5].

Ko te hanganga matū o tokahuke rino kua he whānui ngā tūmomo kitea i roto i te hanganga matū rawa hoki Fe ihirangi me ngā kohuke gangue e pā ana [1]. kohuke rino Major e pā ana ki te nuinga o nga tokahuke rino he hematite, goethite, limonite me magnetite [1,5]. Ko te täoke matua i roto i te tokahuke rino e SiO2 me Al2O3 [1,5,7]. Ko te takawai me te alumina whanau angamaheni kohuke hakari i roto i tokahuke rino he kiripaka, kaolinite, gibbsite, diaspore me corundum. O enei Kei te maha kitea reira e kiripaka ko te ware kohuke takawai te whanau me te kaolinite me gibbsite ko te alumina amo kohuke e rua-matua [7].

Kei te nuinga whakamana rino ore tango i roto i tuwhera poka mahi keri, hua i roto i tailings nui whakatupuranga [2]. te tikanga whai wāhi te pūnaha rino ore whakaputa e toru ngā wāhanga: keri, ngā mahi tukatuka me te pelletizing. o enei, Mā tukatuka e tutuki te kōeke rino tika me te matū te mua ki te atamira pelletizing. Tukatuka ngā kuru, whakarōpū, mira, me te kukū whai i te whakanui ake i te ihirangi rino i te whakaiti i te nui o ngā kohuke gangue [1-2]. He ona ake āhuatanga ahurei ia tāpui kohuke ki te faatura ki te rino, me te gangue amo kohuke, a reira e titau te reira i te tikanga kukū rerekē [7].

Kei te nuinga whakamahia wehenga autō i roto i te beneficiation o tokahuke rino kōeke teitei i reira e ferro me paramagnetic nga kohuke rino tino [1,5]. Wet me maroke iti-kaha wehenga autō (LIMS) E whakamahia tūāhua ki te tukatuka tokahuke ki ngā āhuatanga autō kaha pērā i magnetite i whakamahia mākū nui-kaha wehenga autō te ki wehe i te kohuke Fe-amo ki ngoikore āhuatanga autō pērā i hematite i kohuke gangue. tokahuke rino taua goethite me limonite e nuitia kitea i roto i tailings me e kore e wehe rawa te pai e rānei tikanga [1,5]. tikanga autō tamataraa hakari i roto i ngā o ratou aravihi iti, me te i roto i ngā o te whakaritenga mo te ore rino ki kia haria ki mara autō [5].

tēnei waka, i runga i te tahi atu i te ringa, Kei te whakamahia ki te whakaiti i te ihirangi o poke i roto i te tokahuke rino iti-kōeke [1-2,5]. Ka taea te hāngai tokahuke rino rānei i hāngai tēnei waka anionic o waikura rino ranei whakataka tēnei waka cationic o takawai, Heoi whakataka tonu tēnei waka cationic te ara tēnei waka tino rongonui whakamahia i roto i te ahumahi rino [5,7]. Ko te whakamahi o te tēnei waka ona iti e te utu o tauhohenga, te aroaro o te silica, me te alumina-taonga häware me te aroaro o kohuke pākawa waro [7-8]. ano, titau tēnei waka ururua maimoatanga wai me te whakamahi o te dewatering awa mō tono whakamutunga maroke [1].

Ko te whakamahi o tēnei waka mo te kukū o te rino tā hoki desliming rite tere i roto i te aroaro o whaina hua i roto i te tōtika heke me ngā utu kaiwhakahohe teitei [5,7]. Ko te tino nui mo te tango o alumina rite te wehenga o te gibbsite i hematite goethite ranei e tetahi āpiha mata-kaha Desliming Ko te tino uaua [7]. Te nuinga o ngā kohuke whanau alumina puta i roto i te awhe rahi kaitahi (<20um) allowing for its removal through desliming. whānui, a high concentration of fines (<20um) and alumina increases the required cationic collector dose and decreases selectivity dramatically [5,7].

ano, the presence of carbonate minerals – such as in dolomitic itabirites- can also deteriorate flotation selectivity between iron minerals and quartz as iron ores containing carbonates such as dolomite do not float very selectively. Dissolved carbonates species adsorb on the quartz surfaces harming the selectivity of flotation [8]. Flotation can be reasonably effective in upgrading low-grade iron ores, but it is strongly dependent on the ore mineralogy [1-3,5]. Flotation of iron ores containing high alumina content will be possible via desliming at the expense of the overall iron recovery [7], while flotation of iron ores containing carbonate minerals will be challenging and possibly not feasible [8].

Modern processing circuits of Fe-bearing minerals may include both flotation and magnetic concentration steps [1,5]. hoki tauira, magnetic concentration can be used on the fines stream from the desliming stage prior to flotation and on the flotation rejects. The incorporation of low and high intensity magnetic concentrators allows for an increase in the overall iron recovery in the processing circuit by recovering a fraction of the ferro and paramagnetic iron minerals such as magnetite and hematite [1]. Goethite is typically the main component of many iron plant reject streams due to its weak magnetic properties [9]. In the absence of further downstream processing for the reject streams from magnetic concentration and flotation, the fine rejects will end up disposed in a tailings dam [2]. Tailings disposal and processing have become crucial for environmental preservation and recovery of iron valuables, aua, and therefore the processing of iron ore tailings in the mining industry has grown in importance [10].

Clearly, the processing of tailings from traditional iron beneficiation circuits and the processing of dolomitic itabirite is challenging via traditional desliming-flotation-magnetic concentration flowsheets due to their mineralogy and granulometry, and therefore alternative beneficiation technologies such as tribo-electrostatic separation which is less restrictive in terms of the ore mineralogy and that allows for the processing of fines may be of interest.

wehenga tribo-hiko e faaohipahia rerekētanga tiaki hiko i waenganui i ngā rauemi whakaputaina e te mata whakapā ranei utu triboelectric. I roto i te mau rave'a taurite, ina e rua ngā rauemi i roto i te whakapā, the material with a higher affinity for electron gains electrons thus charges negative, i te rauemi ki raro pakuwha irahiko utu pai. I roto i te parau tumu, low-grade iron ore fines and dolomitic itabirites that are not processable by means of conventional flotation and/or magnetic separation could be upgraded by exploiting the differential charging property of their minerals [11].

Here we present STET tribo-electrostatic belt separation as a possible beneficiation route to concentrate ultrafine iron ore tailings and to beneficiate dolomitic itabirite mineral. The STET process provides the mineral processing industry with a unique water-free capability to process dry feed. The environmentally friendly process can eliminate the need for wet processing, downstream waste water treatment and required drying of final material. I tua atu, E titau te tukanga STET iti i mua i-maimoatanga o te kohuke, me te mahi i te kaha nui - ki runga ki 40 pepe ia haora. Ko iti iho i te Energy kohi 2 kirowati-haora ia ton o rauemi tukatuka.

whakamātau

Materials

i whakamahia e rua pai iti-kōeke tokahuke rino i roto i tenei raupapa o ngā whakamātautau. ngā te ore tuatahi o te ultrafine Fe tailings ore tauira ki te D50 o 20 μm me te tauira tuarua o te tauira rino ore itabirite ki te D50 o 60 μm. Rua tauira ngaahi faingata'a hakari i roto i to ratou beneficiation a taea kore te pai tukatuka i roto i iahiko kukū desliming-tēnei waka-autō tuku iho e tika ana ki to ratou granulometry me mineralogy. i whiwhi tauira e rua i ngā mahi keri i roto i Brazil.

I whiwhi te tauira tuatahi i te ara iahiko kukū desliming-tēnei waka-autō tīariari. I kohia te tauira i te pāpuni tailings, ka maroke, homogenized me Kikī. Ko te tauira tuarua i te hanganga rino itabirite i roto i Brazil. I mongamonga te tauira me te kōmaka i te rahi me te hautanga pai whiwhi i te atamira whakarōpū i muri Nōna e rave rahi ngā wāhanga o te desliming noa te D98 o 150 i tutuki μm. I reira maroke te tauira, homogenized me Kikī.

tuwha rahi matūriki (PSD) i takoto te whakamahi i te analyzer rahi matūriki taiaho ttara, o te Malvern Mastersizer 3000 E. I hoki āhuatanga tauira rua i te Ngaronga-i runga i-pātīmata(TURE), XRF me XRD. Ko te ngaronga i runga i pātīmata (TURE) I whakaritea e te whakatakoto 4 karamu o te tauira i roto i te 1000 ºC oumu mo 60 meneti, me te pūrongo i te loi runga i te pūtake rite riro. oti te tātari hanganga matū i te whakamahi i te roangaru dispersive Fluorescence X-ray (WD-XRF) i uiui, taputapu me te tioata matua ngā wāhanga e XRD tikanga.

Ko te hanganga matū me te loi mo te tauira tailings (Tailings), a mo te hanganga tauira rino itabirite (Itabirite), Kei te whakaaturia i roto i te Ripanga 1 a kua whakaaturia tuwha rahi matūriki mō tauira e rua i roto i te Fig 1. Hoki nga tailings te whāwhā he goethite me hematite te Fe wāhanga whakahoki matua, me te kohuke gangue matua he kiripaka (Fig 4). Hoki te tauira itabirite te Fe ngā wāhanga whakahoki matua he hematite, me nga kohuke gangue matua he kiripaka me te dolomite (Fig 4).

ripanga 1. Hua o te tātari matū mō ngā āhuatanga nui i roto i tailings me tauira Itabirite.

tauira Grade (wt%)
FeSiO2Al2O3MnOMgOcaoLOI**Others
Tailings30.347.44.31.0**3.413.4
Itabirite47.623.00.70.21.52.24.021.0
*<0.1 wt.%.
** TURE 1000 : Ngaronga i runga i Ignition i 1000 C

particle-size-distributions

Distributions Rahi Korakora
Methods

i hangaia te raupapa o ngā ki te tirotiro i te pānga o ngā tawhā rerekē i runga i te kaupapa rino i roto i ngā tauira te rino e rua te whakamahi i STET hangarau whitiki whakawehe tribo-hiko kamupene. whakahaeretia ngā i te whakamahi i te whitiki whakawehe tribo-hiko pae-tauine, a muri ake kīia rite 'whakawehe benchtop'. whakamātautau pae-tauine ko te wāhanga tuatahi o te tukanga whakatinanatanga hangarau e toru-wāhanga (Tirohia te Ripanga 2) tae atu te aromātai pae-tauine, whakamātautau pairati-tauine, me te whakatinanatanga arumoni-tauine. Kei te whakamahia te whakawehe benchtop mō te tātari mō te taunakitanga o e mea tribo-hiko, me te ki te whakatau, ki te ko te rauemi he kaitono pai mō te beneficiation hiko. E te aroaro nga rerekētanga matua i waenganui i wahi ia o te taputapu i roto i te Ripanga 2. Ahakoa te taputapu e whakamahia ana i roto i ia wāhanga rerekē i roto i te rahi, Ko parau te parau tumu mahi te taua.

ripanga 2. tukanga whakatinanatanga-wāhanga e toru te whakamahi i STET hangarau whitiki whakawehe tribo-hiko

WāhangaI whakamahia mō:Hikohiko
Dimensions
(W x L) cm
Type of
Process/
Bench Scale
Evaluation
Qualitative
Evaluation
5*250 Tāpiri
Tauine Pūrere
Testing
Quantitative
Evaluation
15*610 Tāpiri
arumoni
Scale
Implementation
arumoni
Production
107 *610Haere tonu

STET Operation Tefito'i

Ko te parau tumu mahi o te whakawehe whakawhirinaki i runga i tribo-hiko utu. I roto i te whitiki whakawehe tribo-hiko (whika 2 a 3), Kei te whangai rauemi ki te āputa kuiti 0.9 - 1.5 cm i waenganui i rua electrodes planar whakarara. Kei te triboelectrically whakatupato nga matūriki i te interparticle whakapā. Ko te kohuke pai whakatupato(s) me te kohuke tōraro whakatupato(s) E ngā ki electrodes ritenga. Roto e kahakina nga matūriki whakawehe ake i neke i te whitiki tuwhera-mata tonu, me te tuku i roto i ngā tohutohu ritenga. hanga te whitiki e o rauemi kirihou me neke te matūriki pātata ki ia kawehiko ki pito ritenga o te whakawehe. Ko te counter rere o nga matūriki wehe me e mea triboelectric tuturu e collisions matūriki-matūriki o nāianei whakarato hoki te wehenga multistage me hua i roto i te viivii ore pai me te ora i roto i te kōwae kotahi-haere. Kua te triboelectric hangarau whitiki whakawehe kua whakamahia ki te wehe i te whānui o ngā rauemi ngā tae atu ranunga o waiwai aluminosilicates / waro (rere pungarehu), konupāhiko / kiripaka, talc / magnesite, me barite / kiripaka.

whānui, Ko te āhua ohie ki te whitiki, me te whai pānga awa rite te wahi anake neke i te hoahoa whakawehe. He pahoho me tito o te rauemi tika roa nga electrodes. Ko āhua i te roa whakawehe kawehiko 6 mita (20 ft.) me te whanui 1.25 mita (4 ft.) hoki rahi tonu wae arumoni. Te tere whitiki tiketike āhei throughputs tiketike rawa, ki runga ki 40 taranata ia haora mo te rahi tonu wae arumoni. Ko iti iho i te kohi mana 2 kirowati-haora ia ton o rauemi tukatuka ki te nuinga o te kaha pau e rua motors peia te whitiki.

triboelectric-img
Schematic o whakawehe whitiki triboelectric

separation-zone
Taipitopito o te rohe wehenga

I taea te kite i roto i Ripanga 2, te rerekētanga matua i waenganui i te whakawehe benchtop me pairati-tauine me whakawehe arumoni-tauine ko e te roa o te whakawehe benchtop ko āhua 0.4 wā te roa o ngā waeine pairati-tauine, me te arumoni-tauine. Ka rite ki te tōtika whakawehe ko te mahi o te roa kawehiko, e kore e taea te whakamahi whakamātautau pae-tauine rite te whakakapinga mō te whakamātautau kaiurungi-tauine. he tika whakamātautau pairati-tauine ki te whakatau i te whānuitanga o te wehenga i te tukanga STET taea te whakatutuki, a ki te whakatau, ki te taea te whakatau tukanga STET nga ngā taumata hua i raro i reiti kai homai. Engari, whakamahia te kaiwehe benchtop te ki te whakahaere tikanga i roto i ngā rauemi kaitono e he pea ki te whakaatu i tetahi wehenga nui i te taumata pairati-tauine. Ka Hua whiwhi i runga i te pae-tauine kia papaitia-kore, me te wehenga kitea he iti iho i te e pai kia kitea i runga i te whakawehe STET rahi arumoni.

Whakamatautau i te tipu pairati he tika i mua ki te whakamahinga tauine arumoni, Heoi, ākina whakamātautau i te pae-tauine te rite te wāhanga tuatahi o te tukanga whakatinanatanga mo tetahi rauemi hoatu. I tua atu, i roto i te wā i roto i i iti rauemi wātea te, whakarato te kaiwehe benchtop he taputapu whai hua mo te āta o kaupapa angitu pea (i.e., kaupapa i roto i e taea te tutaki kiritaki me te ahumahi ngā taumata kounga whakamahi hangarau STET).

whakamātautau pae-tauine
i whakamana Paerewa tamataraa tukanga huri noa te whāinga motuhake ki te whakapiki ake i Fe kukū, me te ki te whakaiti i te kukū o ngā kohuke gangue. i tūhuratia ngā taurangi rerekē ki te whakanui kaupapa rino, me te ki te whakatau i te ahunga o te kaupapa o ngā kohuke rerekē. Ko tohu o te ahunga o te kaupapa i te tipu pairati me tauine arumoni te ahunga o te kaupapa kitea i roto i whakamātautau benchtop.

Ko te taurangi te uiui ngā haumākū whanaunga (RH), pāmahana, wehenga kawehiko, tere whitiki, me te ngaohiko ka whakamahia. o enei, RH me te pāmahana anake e taea te whai i te pānga nui i runga i pārōnaki tribo-e mea, me te reira i runga i ngā hua wehenga. No reira, i takoto tino arotau tikanga RH me te pāmahana i mua i tirotiro i te pānga o te toe taurangi. i tūhuratia e rua wehenga taumata: i) runga wehenga kawehiko pai, me te ii) runga kawehiko tōraro wehenga tawhiti. Hoki te kaiwehe STET, i raro i te whakaritenga wehenga tawhiti i homai, me te i raro i tino arotau tikanga RH me te pāmahana, tere whitiki Ko te kakau mana tuatahi mō te mä māka hua me te ora papatipu. Whakamātautau i runga i te whakawehe pae tauturu wharau marama i runga i te pānga o etahi taurangi whakahaere i runga i tribo-hiko mea ai mo te tauira kohuke hoatu, a reira whiwhi hua, me te kia whakamahia ai ngā, ki etahi tohu, ki te whakawhāiti iho te maha o ngā taurangi me ngā ki kia whakamana i te tauine paerata tipu. ripanga 3 rārangi te whānui o ngā āhuatanga wehenga whakamahia hei wāhanga o te wāhanga 1 tukanga aro mātai mo te tailings me tauira itabirite.

ripanga 3 rārangi te whānui o ngā āhuatanga wehenga

ParameterUnitsRange of Values
TailingsItabirite
Top Electrode
Polarity
-Positive-
Negative
Positive-
Negative
Electrode Voltage-kV/+kV4-54-5
Feed Relative
Humidity (RH)
%1-30.72-39.6
Feed Temperature ° F
(° C)
71-90
(21.7-32.2)
70-87
(21.1-30.6)
Belt SpeedFps
(m / s)
10-45
(3.0-13.7)
10-45
(3.0-13.7)
Electrode GapInches
(mm)
0.400
(10.2 mm)
0.400
(10.2 mm)

i whakahaere whakamātautau i runga i te whakawehe benchtop i raro i ngā āhuatanga puranga, ki ngā tauira kai o 1.5 lbs. whakamātautau. He oma Nini te whakamahi i 1 LB. o te rauemi i whakaurua ki roto ki waenganui i ngā whakamātautau ki te whakarite kia kore i tetahi taea pānga haapiiraa mana'o i te huru o mua whakaaro. I mua i te whakamātautau i tīmata i homogenized rauemi a i rite peke tauira kei roto e rua oma me te rauemi Nini. I te timatanga o ia whakamātau te pāmahana me te haumākū whanaunga (RH) i whanganga te whakamahi i te puritia-ringa haumākū me Temperature uiuia Vaisala HM41. Ko te whānuitanga o te pāmahana, me te RH puta noa ngā katoa i 70-90 ° F (21.1-32.2 (° C) a 1-39.6%, aua. Hei whakamātau i te raro RH me / pāmahana teitei ranei, puritia kai me te Nini tauira i roto i te oumu whakamaroke i 100 ° C mō ngā wā i waenganui i 30-60 meneti. roto i te rerekē, i tae teitei uara RH mā te tāpiri moni iti o wai ki te rauemi, aru i te homogenization. Muri iho ka whanganga RH me te pāmahana i runga i ia tauira kai, te taahiraa i muri i ki whakaturia kawehiko wehenga tawhiti, tere whitiki, me te ngaohiko ki te taumata e hiahiatia ana. i puritia taimau uara Gap i 0.4 inihi (10.2 mm) i roto i te kaupapa whakamātautau mo nga tailings me tauira itabirite.

I mua ki ia whakamātautau, he kai iti-tauira iti kei roto āhua 20g i kohia (whakaritea rite 'Whāngai'). Ki runga ki te whakatakoto taurangi mahi katoa, i whangai te rauemi ki te whakawehe benchtop mā te whakamahi i te pūwhāngai vibratory hiko i roto i te pokapū o te whakawehe benchtop. i kohia tauira i te mutunga o ia whakamātau, me nga pauna o te mutunga hua 1 (whakaritea rite 'E1') me te mutunga hua 2 (whakaritea rite 'E2') i takoto te whakamahi i te ture-mo-hokohoko tauine tatau. I muri i ia whakamātautau, iti-tauira iti kei roto āhua 20 i kohia ano go o E1 me E2. E whakaahuatia e loto papatipu ki E1 me E2 i:

testing-code2

te wahiAE1 a AE2 Ko nga loto papatipu ki E1 me E2, aua; a ko nga taimaha tauira kohia ki te hua whakawehe E1 me E2, aua. Hoki tauira e rua, I nui haere Fe kukū ki E2 hua.

Hoki ia huinga o te iti-tauira (i.e., whāngai, E1 ko E2) Loi me waikura matua hanganga e XRF i takoto. Fe2 Ko te3 i takoto tirotiro i te uara. Hoki nga tailings ka pā hāngai tauira loi ki te ihirangi o goethite i roto i te tauira rite te rōpū hydroxyl mahi i roto i te goethite ka oxidize ki H2 Ko teg [10]. anga ke, hoki e pā tika te tauira loi itabirite ki te roto i o te pākawa waro i roto i te tauira, rite ka popo konupūmā me te konupora pākawa waro ki o ratou waikura matua hua i roto i te tuku o CO2g me iti tauira raupapa mate taimaha. i rite poria XRF mā te ranu 0.6 karamu o te kohuke tauira ki 5.4 karamu o te konukōhatu tetraborate, i tīpakohia e tika ana ki te hanganga matū o e rua tailings me ngā tauira itabirite. i tonu o XRF tātaritanga mō loi.

I te pae hopea, whakaora Fe EFe ki te hua (E2) a SiO2 makanga Qa i tatau. EFe ko te ōrau o Fe ora ake i roto i te kareti ki taua o te tauira kai taketake, me te Qsio2 Ko te ōrau o nekehia i te tauira kai taketake. EFe a Qa E whakaahuatia e:

te wahi Ci,(whāngai,E1, E2) Ko te ōrau kukū tonu o mo wae i te o iti-tauira (tauira., Fe, Sio2)

testing-code1

Hua me te Aparauraa

tauira Mineralogy

Ko te tauira XRD e whakaatu ana ngā wāhanga kohuke nui mo nga tailings me ngā tauira itabirite e whakaaturia i roto i te Fig 4. Hoki nga tailings te whāwhā e goethite te Fe wāhanga whakahoki matua, hematite me magnetite, me te kohuke gangue matua he kiripaka (Fig 4). Hoki te tauira itabirite te Fe ngā wāhanga whakahoki matua he hematite me magnetite me he kiripaka me te dolomite nga kohuke gangue matua. puta magnetite i roto i nohanga wahi i roto i tauira e rua. hematite Pure, goethite, a roto i magnetite 69.94%, 62.85%, 72.36% Fe, aua.

Graf1

tauira D. A - Tailings tauira, B - tauira Itabirite
ngā pae-tauine
He raupapa o rere whakamātautau i whakamana i runga i ia tauira kohuke e hāngai ana i te whakanui Fe me heke SiO2 ihirangi. Momo te tutonu i ki E1 ka waiho tohu o te whanonga tōraro mea ai i te momo kukū ki E2 ki te whanonga utu pai. i pai ki te tukatuka o te tauira tailings Higher tere whitiki; Heoi, kitea te pānga o tenei tāupe anake i ki kia iti nui mo te tauira itabirite.

E te aroaro hua Toharite mō te tailings me ngā tauira itabirite i roto i te Fig 5, i tatau e i 6 a 4 ngā, aua. Fig 5 E whakaatu ana tukua papatipu toharite me te matū mō te kai me ngā hua E1 me E2. I tua atu, E whakaatu ana ia wahi i te whakapai ake heke ranei i roto i te kukū (E2- whāngai) mo ia wāhanga tauira hei tauira, Fe, SiO2 E pā ana ngā uara takatika ki te hua i roto i te kukū ki E2, ia e pā ana ngā uara tōraro ki te hekenga i roto i te kukū ki E2.

Fig.5. loto papatipu Toharite me te matū mō Whāngai, hua E1 ko E2. tutaki Hapa tohu 95% āputa māia.

Hoki te tauira tailings i nui haere Fe ihirangi i 29.89% ki 53.75%, i runga i toharite, i te tukua papatipu AE2 - ranei whakaora papatipu ao – o 23.30%. hāngai ana tēnei ki Fe whakaora ( me te pato'iraa takawai (QE2 ) uara o 44.17% a 95.44%, aua. I nui haere te ihirangi loi i 3.66% ki 5.62% e tohu e te hua i roto i Fe ihirangi pā ana te ki te hua i roto i te ihirangi goethite (Fig 5).

Hoki te tauira itabirite i nui haere Fe ihirangi i 47.68% ki 57.62%, i runga i toharite, i te tukua papatipu AE2 -o 65.0%. hāngai ana tēnei ki Fe whakaora EFe( me te pato'iraa takawai (Qsio2) uara o 82.95% a 86.53%, aua. Ko te loi, i nui haere tirotiro MgO me cao i 4.06% ki 5.72%, 1.46 ki 1.87% me i 2.21 ki 3.16%, aua, e tohu e te neke dolomite i roto i te ahunga taua rite kohuke Fe-whanau (Fig 5).

Hoki tauira e rua,AL2 Ko te3 , titiro MnO ko P ki kia tohutohutia i roto i te ahunga taua rite kohuke Fe-whanau (Fig 5). Ahakoa te hiahiatia reira ki whakaiti te kukū o enei momo e toru, te kukū ngā o SiO2, AL2 , Ko te3 , AE2 Kei te whakaiti MnO ko P mō tauira e rua, a reira te katoa pānga tutuki te whakamahi i te whakawehe benchtop ko te whakarei i roto i te hua Fe kōeke me he hekenga i roto i te kukū täoke.

whānui, faaite taunakitanga o te utu whai hua, me te wehenga o te rino, me te takawai matūriki benchtop whakamātautau. Ko te hua tauine taiwhanga te fafau whakaaro e kia kia whakamana whakamātautau tauine pairati tae atu whitinga tuatahi, me te tuarua.

Aparauraa
Ko te raraunga whakamātau kōrero e hua te kaiwehe STET i roto i te hua nui i roto i Fe ihirangi ia te wā kotahi whakaiti SiO2 ihirangi.

Ka whakaatu e taea wehenga triboelectrostatic hua i roto i te hua nui i roto i Fe ihirangi, he kōrero i runga i te hiranga o te hua, e hiahiatia ana i runga i nga tirotiro Fe taea mōrahi me te i runga i nga whakaritenga kai o te hangarau kei te.

Hei tīmata, Ko reira nui ki te matapaki i te whanonga e mea kitea o ngā momo kohuke i roto i ngā tauira e rua. Hoki nga tailings te whāwhā i te wāhanga matua Fe waikura, me te kiripaka, me hua whakamātau faaite e Fe waikura hāngai ki E2 ia kiripaka hāngai ki E1. I roto i te mau rave'a taurite, taea te mea te reira e riro Fe matūriki waikura te tiaki pai, me te riro i taua kiripaka matūriki te tiaki tōraro. Ko e hāngai ana ki te āhua triboelectrostatic o kohuke e rua tenei whanonga rite whakaaturia e Ferguson (2010) [12]. ripanga 4 E whakaatu ana te raupapa triboelectric kitea mō kohuke tīpakohia e hāngai ana i runga i te wehenga inductive, a whakaatu reira e kei kiripaka te i te raro o te raupapa utu i goethite, magnetite me hematite e kei teitei ake i roto i te raupapa. ka ahu kohuke i te tihi o te raupapa ki te ako atu pai, ia ka ahu kohuke i te raro ki te whiwhi i te tiaki kino.

I te tahi atu te ringa, mo te tauira itabirite ko nga wāhanga matua hematite, kiripaka me te dolomite me hua whakamātau tohu e Fe waikura, me te dolomite hāngai ki E2 ia kiripaka hāngai ki E1. Tenei tohu e matūriki hematite me te dolomite riro te tiaki pai i matūriki kiripaka riro te tiaki tōraro. I taea te kite i roto i Ripanga 4, E kei pākawa waro i te tihi o te raupapa tribo-hiko, e tohu e matūriki pākawa waro ahu ki te whiwhi i te tiaki pai, a i roto i te tupu ki te kia hāngai ki te E2. i hāngai rua dolomite me hematite i roto i te ahunga taua, tohu e te pānga whānui mō matūriki hematite i te aroaro o te kiripaka me te dolomite ko ki te whiwhi i te tiaki pai.

Ko te ahunga o te kaupapa o te momo mineralogical i roto i ia tauira o te moni ariki, rite ka whakatau ai te mōrahi kōeke taea Fe e taea te whiwhi e te tikanga o te haere kotahi te whakamahi i te hangarau whitiki whakawehe tribo-hiko.

ka hoki nga tailings me tauira itabirite te mōrahi ihirangi Fe whakatutuki kia whakaritea e te āhuatanga e toru: i) Ko te nui o Fe i roto i ngā kohuke Fe-whanau; ii) te kiripaka iti (SiO2 ) ihirangi e taea te tutuki me te; iii) Ko te maha o paranga neke i roto i te ahunga taua rite kohuke Fe-whanau. Hoki nga tailings te whāwhā i te täoke matua neke i roto i te ahunga taua o Fe-amo kohuke e al2 Ko te3 MnO amo kohuke, i hoki te tauira itabirite ko nga täoke matua cao MgO al2 Ko te3 amo kohuke.

Mineral NameCharge acquired (apparent)
Apatite+++++++
Carbonates++++
Monazite++++
Titanomagnetite.
Ilmenite.
Rutile.
Leucoxene.
Magnetite/hematite.
Spinels.
Garnet.
Staurolite-
Altered ilmenite-
Goethite-
Zircon--
Epidote--
Tremolite--
Hydrous silicates--
Aluminosilicates--
Tourmaline--
Actinolite--
Pyroxene---
Titanite----
wherepāra----
te kiripaka-------

ripanga 4. raupapa triboelectric kitea mō kohuke tīpakohia e hāngai ana i runga i te wehenga inductive. Whakakētia i D.N Ferguson (2010) [12].

Hoki te tauira tailings, whanganga te ihirangi Fe i i 29.89%. XRD raraunga tohu e he goethite te wāhanga matua, aru i te hematite, a reira te mōrahi ihirangi Fe whakatutuki ki te i taea e waiho i waenganui i te wehenga ma 62.85% a 69.94% (e ko te tirotiro Fe o goethite parakore me hematite, aua). Na, e kore e taea te wehenga ma rite al2, Ko te3 MnO a kei te neke kohuke P-amo i roto i te ahunga taua rite nga kohuke Fe-amo, a reira i tetahi hua i roto i Fe ihirangi ka hua ano i roto i te hua o enei paranga. Na, ki te whakapiki ake i te ihirangi Fe, ka hiahia te nui o kiripaka ki E2 ki kia tino heke ki te wāhi pokohiwi reira te kaupapa o , MnO ko P ki te hua (E2). Ka rite ki whakaaturia i roto i te Ripanga 4, kiripaka mea he kaha ki te whiwhi i te tiaki kino, a reira i roto i te ngaro o te tahi atu kohuke he he whanonga e mea kino kitea e waiho reira taea ki te tino whakaiti tona ihirangi ki hua (E2) e te tikanga o te haere tuatahi te whakamahi i te triboelectrostatic hangarau whakawehe whitiki.

hoki tauira, ki te amo tatou e whai pānga katoa te ihirangi Fe i te tauira tailings te ki goethite (FeO(OH)), me e te waikura gangue anake e SiO2, al2Ko te3 a MnO, Na e Fe ihirangi ki hua e hoatu e:

Fe(%)=(100-SiO2 – (al2 Ko te3 + MnO*0.6285

te wahi, 0.6285 Ko te ōrau o Fe i goethite parakore. Eq.4 whakaatu te tikanga whakataetae e tango wahi ki te aro Fe rite AL2Ko te3 + MnO faarahi i SiO2 heke.

Hoki te tauira itabirite whanganga te ihirangi Fe i i 47.68%. XRD raraunga tohu e te wāhanga matua ko te hematite me reira te mōrahi ihirangi taea Fe ki te i taea te wehenga ma e kia tata ki 69.94% (e ko te ihirangi Fe o hematite parakore). Ka rite ki i kōrero ai mo nga tailings te whāwhā kore e te wehenga ma kia taea rite cao, MgO, al2 Ko te3 Kei te neke amo kohuke i roto i te ahunga taua rite hematite, a reira ki te whakapiki ake i Fe ihirangi SiO2 Me heke te ihirangi. Mā e pā ana te taatoaraa o te ihirangi Fe i roto i tenei tauira te ki hematite (Fe2Ko te3) a e anake nga waikura roto i roto i ngā kohuke gangue e SiO2, cao, MgO, al2Ko te3 a MnO; Na e Fe ihirangi i roto i te hua, ka hoatu e:

Fe(%)=(100-SiO2-Cao + MgO +al2Ko te3+MnO+TURE*0.6994

te wahi, 0.6994 Ko te ōrau o Fe i hematite parakore. Me kite te reira e ngā Eq.5 loi, ia Eq.4 kore e. Hoki te tauira itabirite, e pā ana te loi e ki te aroaro o te pākawa waro i mo te tauira tailings e whai pānga reira ki Fe-amo kohuke.

hā mahino, hoki e rua tailings me ngā tauira itabirite ko reira taea ki te whakapiki ake i tino te ihirangi Fe i te whakaiti i te ihirangi o SiO2; Heoi, rite whakaaturia i roto i te Eq.4 me Eq.5, ka te mōrahi ihirangi Fe whakatutuki kia iti i te ahunga o te kaupapa, me te kukū o waikura e pā ana ki kohuke gangue.

I roto i te parau tumu, taea atu te nui haere te kukū o Fe i roto i ngā tauira e rua e te tikanga o te haere tuarua i runga i te whakawehe STET i roto i nei cao,MgO al2 Ko te3 a MnOtaea amo kohuke e wehea mai i Fe-amo kohuke. e kia taea peheé wehenga, ki te nuinga o kiripaka i roto i te tauira i nekehia atu i roto i te haere tuatahi. I roto i te ngaro o te kiripaka, etahi o nga kohuke toe gangue kia i tiaki ariā i roto i te huarahi i te ritenga o te goethite, hematite me magnetite, e 'e iku i roto i nui haere ihirangi Fe. hoki tauira, mo te tauira itabirite ka hāngai i roto i te wāhi o te dolomite me te hematite i roto i te raupapa triboelectrostatic (Tirohia te Ripanga 4), kia taea dolomite / hematite wehenga rite dolomite kua he hehema kaha ki te ako atu pai i roto i te pā ana ki te hematite.

Ka kōrero i runga i te tirotiro Fe taea mōrahi he kōrero i runga i te whakaritenga kai e hiahiatia ana mo te te hangarau. titau te kaiwehe whitiki STET tribo-hiko te rauemi kai ki te hei whenua maroke, me te minita. Tino taea moni iti o te makuku i te pānga nui i runga i pārōnaki tribo-e mea, me te reira kia heke te makuku kai ki <0.5 wt.%. I tua atu, the feed material should be ground sufficiently fine to liberate gangue materials and should be at least 100% passing mesh 30 (600 um). At least for the tailings sample, the material would have to be dewatered followed by a thermal drying stage, while for the itabirite sample grinding coupled with, or follow by, thermal drying would be necessary prior to beneficiation with the STET separator.

The tailings sample was obtained from an existing desliming-flotation-magnetic concentration circuit and collected directly from a tailings dam. Typical paste moistures from tailings should be around 20-30% and therefore the tailings would need to be dried by means of liquid-solid separation (dewatering) followed by thermal drying and deagglomeration. The use of mechanical dewatering prior to drying is encouraged as mechanical methods have relative low energy consumption per unit of liquid removed in comparison to thermal methods. About 9.05 Btu are required per pound of water eliminated by means of filtration while thermal drying, i runga i te tahi atu i te ringa, requires around 1800 Btu per pound of water evaporated [13]. The costs associated with the processing of iron tailings will ultimately depend on the minimum achievable moisture during dewatering and on the energetic costs associated with drying.

The itabirite sample was obtained directly from an itabirite iron formation and therefore to process this sample the material would need to undergo crushing and milling followed by thermal drying and deagglomeration. One possible option is the use of hot air swept roller mills, in which dual grinding and drying could be achieved in a single step. The costs associated with the processing of itabirite ore will depend on the feed moisture, feed granulometry and on the energetic costs associated to milling and drying.

For both samples deagglomeration is necessary after the material have been dried to ensure particles are liberated from one another. Deagglomeration can be performed in conjunction to the thermal drying stage, allowing for efficient heat transfer and energy savings.

whakatau

Ko te hua pae-tauine te aroaro konei whakaatu taunakitanga kaha o tohutohutia me wehenga o ngā kohuke Fe-te whanau i te kiripaka te whakamahi i te wehenga whitiki triboelectrostatic.

Hoki te tauira tailings i nui haere Fe ihirangi i 29.89% ki 53.75%, i runga i toharite, i te tukua papatipu o 23.30%, e hāngai ana ki Fe ora me te takawai pato'iraa uara o 44.17% a 95.44%, aua. Hoki te tauira itabirite i nui haere Fe ihirangi i 47.68 % ki 57.62%, i runga i toharite, i te tukua papatipu o 65.0%, e hāngai ana ki Fe ora me te takawai pato'iraa uara o 82.95% a 86.53%, aua. i oti ēnei hua i runga i te whakawehe i te mea iti, me te iti iho pai atu i te whakawehe arumoni STET.

kitenga whakamātau tohu e hoki e rua tailings me ngā tauira itabirite ka whakawhirinaki te mōrahi ihirangi Fe whakatutuki i runga i te ihirangi iti kiripaka taea. I tua atu, whakatutuki teitei kōeke Fe kia taea e te tikanga o te rua o haere i runga i te whakawehe STET whitiki.

Ko nga hua o tenei ako faaite taea te ake e iti-kōeke rino whaina ore i te tikanga o te whakawehe whitiki STET tribo-hiko. tūtohutia mahi atu i te tauine pairati whakato te ki te whakatau i te kōeke rino kareti me whakaora e taea te tutuki. I runga i te wheako, te whakaora hua kōeke me / ranei tino e whakapai ake i te tukatuka tauine pairati, he mea whakarite ki te pūrere whakamātau pae-tauine whakamahia i roto i enei mau tamataraa rino ore. kia whakahere i te tukanga wehenga STET tribo-hiko painga nui i runga i ngā tikanga tukatuka tikanga mō whaina rino ore.

Tohutoro

  • lu, L. (Ed.). (2015), "Iron Ore: Mineralogy, Tukatuka me te Sustainability Taiao ", Elsevier.
  • Ferreira, H., & te waiu, M. G. P. (2015), "He ako Life Cycle aromatawai o rino maina ore", Journal o kaihoroi production, 108, 1081-1091.
  • i roto i, Q., ra, T., Wang, G., Cheng, J., Zhong, W., wen, B., & Liang, L. (2018), "Tātari rauemi rere Iron mō te hanga, kohi, me te hokohoko i roto i China i 2010 ki 2015 ", Journal o Pūtahitahi Production, 172, 1807-1813.
  • wōnati, P. V., Rocha, M. P., Borges, W. R., Silva, He. M., & Assis, L. M. (2016), "Ako o tāpui rino te whakamahi i ata tāhapa rū me te resistivity i Carajás Mineral Porowini, Brazil ", Journal of Applied Geophysics, 133, 116-122.
  • Filippov, L. O., Severov, V. V., & Filippova, ahau. V. (2014), "He tirohanga whānui o te beneficiation o tokahuke rino mā tēnei waka cationic whakamuri", hautaka International o tukatuka kohuke, 127, 62-69.
  • Rosière, C. A., & Brunnacci-Ferreira-Santos, N. "Dolomitic Itabirites me To'u o waro i roto i te hanganga Cauê, Quadrangle ".
  • Sahoo, H., Rath, S. S., Rao, D. S., Mishra, B. K., & te, B. (2016), "Mahi o te silica, me te alumina ihirangi i roto i te waka o tokahuke rino", International Journal o Mineral Processing, 148, 83-91.
  • Luo, X., Wang, Y., wen, S., ma, M., Sun, C., Yin, W., & ma, A. (2016), "Pānga o kohuke pākawa waro i runga i te whanonga tēnei waka kiripaka i raro i ngā āhuatanga o whakamuri tēnei waka anionic o tokahuke rino", International Journal o Mineral Processing, 152, 1-6.
  • Jang, K. O., none, V. R., Hapugoda, S., Nguyen, He. V., & Bruckard, W. J. (2014), "Matū me te kohuke panoni o te ore goethite kōeke iti i te dehydroxylation, rīhi whakaiti me te wehenga autō ", Minerals engineering, 60, 14-22.
  • da Silva, F. L., Araújo, F. G. S., Teixeira, M. P., Gomes, R. C., & Kruger, F. L. (2014), "Ako o te ora, me te hangarua o tailings i te kukū o te ore rino mo te hanga o uku", ceramics International, 40(10), 16085-16089.
  • Mirkowska, M., raraku, M., Teichert, C., & Flachberger, H. (2016), "Take Tumuaki o Whakapā tohutohutia o Minerals mo te angitu Wehenga Triboelectrostatic Tukanga-te Arotake", Hauptfaktoren der Triboaufladung von Mineralphasen für eine erfolgreiche elektrostatische Trennung–ein Überblick. BHM Berg-und Hüttenmännische Monatshefte, 161(8), 359-382.
  • Ferguson, D. N. (2010), "He raupapa triboelectric taketake mō kohuke taimaha i inductive whanonga wehenga hiko", Journal o te Southern Institute o Mining me Metallurgy African, 110(2), 75-78.
  • Fuerstenau, M. C., & E ratou, K. N. (Eds.). (2003), "Wehenga Wai-Solid", Ngaahi Tefito'i Mo'oni o tukatuka kohuke, SME.