Suché Benefizácie nízkej úrovne železa rudy pokuty pomocou TRIBO-elektrický pás separátor

Stiahnuť PDF

Lucas Rojas Mendoza, Zariadenia ST & Technológia, USA
lrojasmendoza@steqtech.com
Frank Hrach, Zariadenia ST & Technológia, USA
Kyle Flynn, Zariadenia ST & Technológia, USA
Abhishek Gupta, Zariadenia ST & Technológia, USA

Zariadenia ST & Technology LLC (STET) vyvinul nový systém spracovania založený na separácii TRIBO-elektrostatického pásu, ktorý poskytuje priemyselnému spracovateľského priemyslu prostriedky na to, aby mohol získať jemné materiály s energeticky efektívnou a úplne suchou technológiou. In contrast to other electrostatic separation processes that are typically limited to particles >75µm in size, oddeľovač STET triboelektrického pásu je vhodný na separáciu veľmi jemných (<1µm) na stredne hrubé (500µm) particles, s veľmi vysokou priepustnosťou. The STET tribo-electrostatic technology has been used to process and commercially separate a wide range of industrial minerals and other dry granular powders. Here, bench-scale results are presented on the beneficiation of low-grade Fe ore fines using STET belt separation process. Bench-scale testing demonstrated the capability of the STET technology to simultaneously recover Fe and reject SiO2 from itabirite ore with a D50 of 60µm and ultrafine Fe ore tailings with a D50 of 20µm. The STET technology is presented as an alternative to beneficiate Fe ore fines that could not be successfully treated via traditional flowsheet circuits due to their granulometry and mineralogy.

Úvod

Železná Ruda je štvrtý najbežnejší prvok v zemskej kôre [1]. Železo je nevyhnutné pre výrobu ocele, a preto je základným materiálom pre globálny ekonomický rozvoj [1-2]. Železo je tiež široko používaný v stavebníctve a výrobe vozidiel [3]. Väčšina zdrojov železnej rudy sa skladá z premenil pruhovaný železné útvary (Bif) v ktorom sa železo bežne nachádza vo forme oxidov, hydroxidy a v menšej miere uhličitany [4-5]. Konkrétny typ železných útvarov s vyšším obsahom uhličitanu sú dolomitické itabirites, ktoré sú produktom dolomitizácie a metamorfizmu vkladov BIF [6]. Najväčší železnej rudy vklady na svete možno nájsť v Austrálii, Čína, Kanada, Ukrajina, Indii a Brazílii [5].

Chemické zloženie železných rúd má zjavný široký rozsah chemického zloženia, najmä pre obsah FE a súvisiace minerály hlušiny použitého [1]. Hlavné železné minerály spojené s väčšinou železných rúd sú hematit, goethitu, limonite a magnetit [1,5]. Hlavnými kontaminanty v železných rúd sú SiO2 a Al2O3 [1,5,7]. Typický oxid kremičitý a oxidu hlinitého ložiskové minerály prítomné v železných rúd sú kremíkové, kaolinitu, gibbsite, diaspore a KORUND. Z nich je často pozorované, že kremeň je priemerný oxid kremičitý ložiská minerálne a kaolinitu a gibbsite sú dva-hlavné ložiskové minerály oxidu hlinitého [7].

Ťažba železnej rudy sa vykonáva hlavne prostredníctvom otvorených operácií pit Mining, Výsledkom je významná generácia hlušina [2]. Výrobný systém železnej rudy zvyčajne zahŕňa tri štádiá: Ťažba, spracovanie a peletizačné činnosti. Z týchto, spracovanie zaisťuje, že sa dosiahne adekvátna trieda železa a chémia pred peletizačné štádium. Spracovanie zahŕňa drvenie, Klasifikácia, frézovanie a koncentrácia zameraná na zvýšenie obsahu železa pri súčasnom znížení množstva minerálov v hlušiny použitého [1-2]. Každý minerálny vklad má svoje vlastné jedinečné vlastnosti, pokiaľ ide o železo a hlušiny použitého ložiskové minerály, a preto si vyžaduje inú koncentráciu techniku [7].

Magnetická separácia sa zvyčajne používa pri beneficiácii vysokokvalitných železných rúd, kde sú dominantné železné minerály Ferro a paramagnetické [1,5]. Mokrá a suchá magnetická separácia s nízkou intenzitou (Lims) techniky sa používajú na spracovanie rúd so silnými magnetickými vlastnosťami, ako je magnetit, zatiaľ čo mokré vysokointenzívnych magnetickej separácie sa používa na oddelenie Fe-ložiskové minerály so slabým magnetickým vlastnosťami, ako je hematit z hlušiny použitého minerálov. Železné rudy ako goethitu a limonit sú bežne nájdené v hlušina a nie je veľmi dobre oddeliť buď technikou [1,5]. Magnetické metódy predstavujú výzvy z hľadiska ich nízkej kapacity a z hľadiska požiadavky na to, aby Železná Ruda bola náchylná na magnetické polia [5].

Flotačné, na druhej strane, sa používa na zníženie obsahu nečistôt v nízkoakostnej železnej rudy [1-2,5]. Železné rudy sa môžu koncentrovať buď priamou aniónovou flotáciou oxidov železa alebo reverzné katiónové flotácia oxidu kremičitého, Avšak reverzná Katiónová flotácia zostáva najpopulárnejšou flotačná trasa používaná v železiarstve [5,7]. Používanie flotácie je obmedzené nákladmi na reagenty, prítomnosť oxidu kremičitého a Alumina-bohaté slimes a prítomnosť uhličitanov minerálov [7-8]. Okrem toho, flotácia vyžaduje čistenie odpadových vôd a použitie následného odvodňovacích pre suché finálne aplikácie [1].

Použitie flotácie pre koncentráciu železa zahŕňa aj odvápovanie ako plávajúce za prítomnosti pokút má za následok zníženú účinnosť a vysoké náklady na činidlo [5,7]. Odvápňovanie je obzvlášť dôležité pre odstránenie oxidu hlinitého ako oddelenie gibbsite z hematitu alebo goethitu akékoľvek povrchovo aktívne látky je pomerne ťažké [7]. Väčšina ložísk s ložiskami oxidu hlinitého sa vyskytuje v rozmedzí veľkostí (<20Služby um) umožnenie jeho odstránenia odsoľovaním. celkový, vysoká koncentrácia pokút (<20Služby um) a oxid hliničitý zvyšuje požadovanú dávku kolektora a dramaticky znižuje selektivitu [5,7].

Okrem toho, the presence of carbonate minerals – such as in dolomitic itabirites- can also deteriorate flotation selectivity between iron minerals and quartz as iron ores containing carbonates such as dolomite do not float very selectively. Dissolved carbonates species adsorb on the quartz surfaces harming the selectivity of flotation [8]. Flotation can be reasonably effective in upgrading low-grade iron ores, but it is strongly dependent on the ore mineralogy [1-3,5]. Flotation of iron ores containing high alumina content will be possible via desliming at the expense of the overall iron recovery [7], while flotation of iron ores containing carbonate minerals will be challenging and possibly not feasible [8].

Modern processing circuits of Fe-bearing minerals may include both flotation and magnetic concentration steps [1,5]. For instance, magnetic concentration can be used on the fines stream from the desliming stage prior to flotation and on the flotation rejects. The incorporation of low and high intensity magnetic concentrators allows for an increase in the overall iron recovery in the processing circuit by recovering a fraction of the ferro and paramagnetic iron minerals such as magnetite and hematite [1]. Goethite is typically the main component of many iron plant reject streams due to its weak magnetic properties [9]. In the absence of further downstream processing for the reject streams from magnetic concentration and flotation, the fine rejects will end up disposed in a tailings dam [2]. Tailings disposal and processing have become crucial for environmental preservation and recovery of iron valuables, v uvedenom poradí, and therefore the processing of iron ore tailings in the mining industry has grown in importance [10].

Clearly, the processing of tailings from traditional iron beneficiation circuits and the processing of dolomitic itabirite is challenging via traditional desliming-flotation-magnetic concentration flowsheets due to their mineralogy and granulometry, and therefore alternative beneficiation technologies such as tribo-electrostatic separation which is less restrictive in terms of the ore mineralogy and that allows for the processing of fines may be of interest.

Tribo-elektrostatická separácia využíva rozdiely v elektrickom náboji medzi materiálmi produkovanými povrchovým kontaktom alebo triboelektrickým nabíjaním. Zjednodušene povedané, keď sú v kontakte dva materiály, the material with a higher affinity for electron gains electrons thus charges negative, zatiaľ čo materiál s nižšou elektrónovou afinitou sa nabíja kladne. In principle, low-grade iron ore fines and dolomitic itabirites that are not processable by means of conventional flotation and/or magnetic separation could be upgraded by exploiting the differential charging property of their minerals [11].

Here we present STET tribo-electrostatic belt separation as a possible beneficiation route to concentrate ultrafine iron ore tailings and to beneficiate dolomitic itabirite mineral. The STET process provides the mineral processing industry with a unique water-free capability to process dry feed. The environmentally friendly process can eliminate the need for wet processing, downstream waste water treatment and required drying of final material. okrem toho, Proces STET vyžaduje malú predbežnú úpravu minerálu a pracuje s vysokou kapacitou – až do 40 tóny za hodinu. Spotreba energie je nižšia ako 2 kilowatthodín na tonu spracovaného materiálu.

Experimentálne

Materiály

V tejto sérii testov sa používali dve jemné železné rudy s nízkym stupňom. Prvá Ruda pozostávala z displej Ultrafine vzorky na hlušina, s D50 20 µm and the second sample of an itabirite iron ore sample with a D50 of 60 µm. Both samples present challenges during their beneficiation and cannot be efficiently processed through traditional desliming-flotation-magnetic concentration circuits due to their granulometry and mineralogy. Both samples were obtained from mining operations in Brazil.

The first sample was obtained from an existing desliming-flotation-magnetic concentration circuit. The sample was collected from a tailings dam, then dried, homogenized and packed. The second sample is from an itabirite iron formation in Brazil. The sample was crushed and sorted by size and the fine fraction obtained from the classification stage later underwent several stages of desliming until a D98 of 150 µm was achieved. The sample was then dried, homogenized and packed.

Particle size distributions (PSD) were determined using a laser diffraction particle size analyzer, a Malvern’s Mastersizer 3000 E. Both samples were also characterized by Loss-on-ignition(LOI), XRF and XRD. The loss on ignition (LOI) was determined by placing 4 grams of sample in a 1000 ºC furnace for 60 minutes and reporting the LOI on an as received basis. The chemical composition analysis was completed using a wavelength dispersive X-ray Fluorescence (WD-XRF) instrument and the main crystalline phases were investigated by XRD technique.

The chemical composition and LOI for the tailings sample (Tailings), and for the itabirite iron formation sample (Itabirite), is shown in Table 1 and particle size distributions for both samples are shown in Fig 1. For the tailings sample the main Fe recoverable phases are goethite and hematite, a hlavné hlušiny použitého minerálne je kremeň (Figa 4). Pre itabirite vzorku hlavné Fe obnoviteľné fázy sú hematit, a hlavný hlušiny použitého minerály sú kremeň a Dolomit (Figa 4).

Tabuľka 1. Výsledok chemickej analýzy pre hlavné prvky v hlušina a itabirite vzoriek.

Vzorky Triedy (WT)
FeSiO2Al2O3MnOMgoCaOLOI * *Ostatné
Tailings30.347.44.31.0**3.413.4
Itabirite47.623.00.70.21.52.24.021.0
*<0.1 WT .%.
** LOI 1000 : Strata pri zapálení pri 1000 C

particle-size-distributions

Distribúcia veľkosti častíc
Metódy

Séria experimentov bola navrhnutá tak, aby preskúmala vplyv rôznych parametrov na pohyb železa v obidvoch vzorkách železa pomocou STET proprietárnu TRIBO-elektrostatický pás separátor technológie. Pokusy boli vykonané pomocou Bench-mierka TRIBO-elektrostatický pás separátor, ďalej len "oddeľovač v rámci referenčného horného". Testovanie na lavičke je prvou fázou trojfázového procesu implementácie technológií (Pozri tabuľku 2) vrátane hodnotenia plošnej stupnice, Pilotné testovanie a komerčná implementácia. Oddeľovač stolových dosiek sa používa na skríning na účely dôkazu tribo-elektrostatického nabíjania a na určenie, či je materiál dobrým kandidátom na elektrostatickú dobročinnosť.. Hlavné rozdiely medzi každým zariadením sú uvedené v tabuľke 2. Zatiaľ čo zariadenia používané v každej fáze sa líšia veľkosťou, Princíp činnosti je v zásade rovnaký.

Tabuľka 2. Trojfázový implementačný proces využívajúci technológiu triboelektrostatického pásového separátoru STET

FázaPoužíva sa na:Elektróda
Dimensions
(W x L) cm
Type of
Process/
Bench Scale
Evaluation
Qualitative
Evaluation
5*250 Dávka
Pilotná váha
Testovanie
Quantitative
Evaluation
15*610 Dávka
Komerčné
Scale
Implementation
Komerčné
Production
107 *610Nepretržitý

STET Operation Principle

The operation principle of the separator relies on tribo-electrostatic charging. V tribo-elektrostatickom oddeľovače pásov (Čísla 2 a 3), material is fed into the narrow gap 0.9 – 1.5 cm medzi dvoma paralelnými rovinnými elektródami. Častice sú triboelectrically nabité medzičastou kontaktu. The positively charged mineral(s) and the negatively charged mineral(s) sú priťahované k oproti elektródy. Inside the separator particles are swept up by a continuous moving open-mesh belt and conveyed in opposite directions. The belt is made of plastic material and moves the particles adjacent to each electrode toward opposite ends of the separator. The counter current flow of the separating particles and continual triboelectric charging by particle-particle collisions provides for a multistage separation and results in excellent purity and recovery in a single-pass unit. Technológia triboelektrického separátora pásov bola použitá na separáciu širokej škály materiálov vrátane zmesí sklovitých hlinitokremičitanov / uhlíka (Popolček), kalcit/kremenník, mastenec/magnezit, a baryt/kremeň.

celkový, the separator design is relatively simple with the belt and associated rollers as the only moving parts. Elektródy sú stacionárne a zložené z vhodne odolný materiál. Dĺžka separačnej elektródy je približne 6 Merače (20 ft.) a šírku 1.25 Merače (4 ft.) pre komerčné jednotky plnej veľkosti. The high belt speed enables very high throughputs, až do 40 tons per hour for full size commercial units. Spotreba energie je nižšia ako 2 kilowatt-hours per ton of material processed with most of the power consumed by two motors driving the belt.

triboelectric-img
Schéma triboelektrického oddeľovača pásov

separation-zone
Detail separačnej zóny

Ako je možné vidieť v tabuľke 2, Hlavný rozdiel medzi stolovým separátorom a poloprevádzkovými a komerčnými separátormi spočíva v tom, že dĺžka stolového separátoru je približne 0.4 časy dĺžky pilotných a komerčných jednotiek. Keďže účinnosť separátora je funkciou dĺžky elektródy, skúšky na lavičke sa nemôžu použiť ako náhrada za pilotné skúšky. Testovanie pilotného rozsahu je potrebné na určenie rozsahu oddelenia, ktoré môže proces STET dosiahnuť, a určiť, či proces STET môže spĺňať ciele výrobku podľa daných sadzieb krmív. Namiesto, oddeľovač stolových dosiek sa používa na vylúčenie kandidátskych materiálov, ktoré pravdepodobne nepreukazujú žiadne významné oddelenie na úrovni pilotného rozsahu. Výsledky získané na lavičke nebudú optimalizované, a pozorované oddelenie je menšie, ako by sa pozorovalo na odlučovači STET komerčnej veľkosti.

Pred komerčným nasadením je potrebné testovanie v pilotnej prevádzke, Avšak, Testovanie na stolovej stupnici sa odporúča ako prvá fáza procesu implementácie akéhokoľvek materiálu. Okrem toho, v prípadoch obmedzenej dostupnosti materiálu, Stolový separátor poskytuje užitočný nástroj na skríning potenciálnych úspešných projektov (t. j., projekty, v ktorých je možné splniť ciele kvality zákazníkov a priemyslu pomocou technológie STET).

Testovanie na skúšobnom zariadení
Standard process trials were performed around the specific goal to increase Fe concentration and to reduce the concentration of gangue minerals. Different variables were explored to maximize iron movement and to determine the direction of movement of different minerals. The direction of movement observed during benchtop testing is indicative of the direction of movement at the pilot plant and commercial scale.

The variables investigated included relative humidity (RH), teplota, electrode polarity, belt speed and applied voltage. Z týchto, RH and temperature alone can have a large effect on differential tribo-charging and therefore on separation results. Teda, optimum RH and temperature conditions were determined before investigating the effect of the remaining variables. Two polarity levels were explored: i) top electrode polarity positive and ii) top electrode polarity negative. For the STET separator, under a given polarity arrangement and under optimum RH and temperature conditions, belt speed is the primary control handle for optimizing product grade and mass recovery. Testing on the bench separator helps shed light on the effect of certain operational variables on tribo-electrostatic charging for a given mineral sample, and therefore obtained results and trends may be used, to certain degree, to narrow down the number of variables and experiments to be performed at the pilot plant scale. Tabuľka 3 lists the range of separation conditions used as part of phase 1 evaluation process for the tailings and itabirite samples.

Tabuľka 3 lists the range of separation conditions

ParameterUnitsRange of Values
TailingsItabirite
Top Electrode
Polarity
-Positive-
Negative
Positive-
Negative
Electrode Voltage-kV/+kV4-54-5
Feed Relative
Humidity (RH)
%1-30.72-39.6
Feed Temperature °F
(° C)
71-90
(21.7-32.2)
70-87
(21.1-30.6)
Belt SpeedFps
(m/s)
10-45
(3.0-13.7)
10-45
(3.0-13.7)
Electrode GapInches
(mm)
0.400
(10.2 mm)
0.400
(10.2 mm)

Testy boli vykonané na stolovom separátore v podmienkach šarží, with feed samples of 1.5 lbs. per test. A flush run using 1 Libra. of material was introduced in between tests to ensure that any possible carryover effect from the previous condition was not considered. Before testing was started material was homogenized and sample bags containing both run and flush material were prepared. At the beginning of each experiment the temperature and relative humidity (RH) was measured using a Vaisala HM41 hand-held Humidity and Temperature probe. The range of temperature and RH across all experiments was 70-90 °F (21.1-32.2 (° C) a 1-39.6%, v uvedenom poradí. To test a lower RH and/or higher temperature, feed and flush samples were kept in a drying oven at 100 °C for times between 30-60 minutes. Na rozdiel od toho, higher RH values were attained by adding small amounts of waters to the material, followed by homogenization. After RH and temperature was measured on each feed sample, the next step was to set electrode polarity, belt speed and voltage to the desired level. Gap values were kept constant at 0.4 palcov (10.2 mm) during the testing campaigns for the tailings and itabirite samples.

Pred každým testom, a small feed sub-sample containing approximately 20g was collected (označené ako "krmivá"). Po nastavení všetkých prevádzkových premenných, materiál bol privádzaný do stolového separátoru pomocou elektrického vibračného podávača cez stred stolového separátoru. Vzorky boli odobraté na konci každého experimentu a hmotnosti na konci produktu 1 (označené ako "E1") a koniec produktu 2 (označené ako "E2") boli stanovené pomocou počítacej stupnice legálnej pre živnosť. Following each test, small sub-samples containing approximately 20 g of E1 and E2 were also collected. Mass yields to E1 and E2 are described by:

testing-code2

kdeYE1 a YE2 are the mass yields to E1 and E2, v uvedenom poradí; and are the sample weights collected to the separator products E1 and E2, v uvedenom poradí. For both samples, Fe concentration was increased to product E2.

Pre každú sadu čiastkových vzoriek (t. j., Feed, E1 a E2) LOI and main oxides composition by XRF was determined. Fe2 O3 contents were determined from the values. For the tailings sample LOI will directly relate to the content of goethite in the sample as the functional hydroxyl groups in goethite will oxidize into H2 Og [10]. Opak, for the itabirite sample LOI will directly relate to the contain of carbonates in the sample, as calcium and magnesium carbonates will decompose into their main oxides resulting in the release of CO2g and sub sequential sample loss weight. XRF beads were prepared by mixing 0.6 grams of mineral sample with 5.4 grams of lithium tetraborate, which was selected due to the chemical composition of both tailings and itabirite samples. XRF analysis were normalized for LOI.

Nakoniec, Fe recovery EFe to product (E2) a SiO2 rejection QSi were calculated. EFe is the percentage of Fe recovered in the concentrate to that of the original feed sample and Qsio2 is the percentage of removed from the original feed sample. EFe a Qsi are described by:

kde Ci,(feed,E1,E2) is the normalized concentration percentage for the sub-sample’s i component (eg., Fe, sio2)

testing-code1

Výsledky a diskusia

Vzorky mineralógie

The XRD pattern showing major mineral phases for the tailings and itabirite samples are shown in Fig 4. For the tailings sample the main Fe recoverable phases are goethite, hematite and magnetite, a hlavné hlušiny použitého minerálne je kremeň (Figa 4). For the itabirite sample the main Fe recoverable phases are hematite and magnetite and the main gangue minerals are quartz and dolomite. Magnetite appears in trace concentrations in both samples. Pure hematite, goethitu, and magnetite contain 69.94%, 62.85%, 72.36% Fe, v uvedenom poradí.

Graf1

D patterns. A – Tailings sample, B – Itabirite sample
Experimenty na stolovom meradle
A series of test runs were performed on each mineral sample aimed at maximizing Fe and decreasing SiO2 content. Species concentrating to E1 will be indicative of a negative charging behavior while species concentration to E2 to a positive charging behavior. Higher belt speeds were favorable to the processing of the tailings sample; Avšak, the effect of this variable alone was found to be less significant for the itabirite sample.

Average results for the tailings and itabirite samples are presented in Fig 5, which were calculated from 6 a 4 experiments, v uvedenom poradí. Figa 5 presents average mass yield and chemistry for feed and products E1 and E2. okrem toho, each plot presents the improvement or decrease in concentration (E2- Feed) for each sample component e.g., Fe, SiO2 Positive values are associated to an increase in concentration to E2, while negative values are associated to a decrease in concentration to E2.

Fig.5. Average mass yields and chemistry for Feed, E1 and E2 products. Error bars represent 95% confidence intervals.

For the tailings sample Fe content was increased from 29.89% na 53.75%, on average, at a mass yield YE2 – or global mass recovery – z 23.30%. This corresponds to Fe recovery ( and silica rejection (QE2 ) values of 44.17% a 95.44%, v uvedenom poradí. The LOI content was increased from 3.66% na 5.62% which indicates that the increase in Fe content is related to an increase in goethite content (Figa 5).

For the itabirite sample Fe content was increased from 47.68% na 57.62%, on average, at a mass yield YE2 -z 65.0%. This corresponds to Fe recovery EFe( and silica rejection (Qsio2) values of 82.95% a 86.53%, v uvedenom poradí. The LOI, MgO and CaO contents were increased from 4.06% na 5.72%, 1.46 na 1.87% and from 2.21 na 3.16%, v uvedenom poradí, which indicates that dolomite is moving in the same direction as Fe-bearing minerals (Figa 5).

For both samples,AL2 O3 , MnO and P seem to be charging in the same direction as Fe-bearing minerals (Figa 5). While it is desired to decrease the concentration of these three species, the combined concentration of SiO2, AL2 , O3 , YE2 MnO and P is decreasing for both samples, and therefore the total effect achieved using the benchtop separator is an enhancement in the product Fe grade and a decrease in the contaminants concentration.

celkový, benchtop testing demonstrated evidence of effective charging and separation of iron and silica particles. The promising laboratory scale results suggest that pilot scale tests including first and second passes should be performed.

Diskusia
The experimental data suggests that the STET separator resulted in an important increase in Fe content while simultaneously reducing SiO2 content.

Having demonstrated that triboelectrostatic separation can result in a significant increase in Fe content, a discussion on the significance of the results, on the maximum achievable Fe contents and on the feed requirements of the technology is needed.

To start, it is important to discuss the apparent charging behavior of mineral species in both samples. For the tailings sample the main components were Fe oxides and quartz and experimental results demonstrated that Fe oxides concentrated to E2 while quartz concentrated to E1. Zjednodušene povedané, it could be said that Fe oxide particles acquired a positive charge and that quartz particles acquired a negative charge. This behavior is consistent with the triboelectrostatic nature of both minerals as shown by Ferguson (2010) [12]. Tabuľka 4 shows the apparent triboelectric series for selected minerals based on inductive separation, and it shows that quartz is located at the bottom of the charging series while goethite, magnetite and hematite are located higher up in the series. Minerals at the top of the series will tend to charge positive, while minerals at the bottom will tend to acquire a negative charge.

On the other hand, for the itabirite sample the main components were hematite, quartz and dolomite and experimental results indicated that Fe oxides and dolomite concentrated to E2 while quartz concentrated to E1. This indicates that hematite particles and dolomite acquired a positive charge while quartz particles acquired a negative charge. Ako je možné vidieť v tabuľke 4, carbonates are located at the top of the tribo-electrostatic series, which indicates that carbonate particles tend to acquire a positive charge, and in consequence to be concentrated to E2. Both dolomite and hematite were concentrated in the same direction, indicating that the overall effect for hematite particles in the presence of quartz and dolomite was to acquire a positive charge.

The direction of movement of the mineralogical species in each sample is of paramount interest, as it will determine the maximum achievable Fe grade that can be obtained by means of a single pass using the tribo-electrostatic belt separator technology.

For the tailings and itabirite samples the maximum achievable Fe content will be determined by three factors: i) The amount of Fe in Fe-bearing minerals; ii) the minimum quartz (SiO2 ) content that can be achieved and; iii) The number of contaminants moving in the same direction as Fe-bearing minerals. For the tailings sample the main contaminants moving in the same direction of Fe-bearing minerals are Al2 O3 MnO bearing minerals, while for the itabirite sample the main contaminants are CaO Mgo Al2 O3 bearing minerals.

Mineral NameCharge acquired (apparent)
Apatite+++++++
Carbonates++++
Monazite++++
Titanomagnetite.
Ilmenite.
Rutile.
Leucoxene.
Magnetite/hematite.
Spinels.
Garnet.
Staurolite-
Altered ilmenite-
Goethite-
Zircon--
Epidote--
Tremolite--
Hydrous silicates--
Aluminosilicates--
Tourmaline--
Actinolite--
Pyroxene---
Titanite----
Živec----
Quartz-------

Tabuľka 4. Apparent triboelectric series for selected minerals based on inductive separation. Modified from D.N Ferguson (2010) [12].

For the tailings sample, the Fe content was measured at 29.89%. XRD data indicates that the predominant phase is goethite, followed by hematite, and therefore the maximum achievable Fe content if a clean separation was possible would be between 62.85% a 69.94% (which are the Fe contents of pure goethite and hematite, v uvedenom poradí). Teraz, a clean separation is not possible as Al2, O3 MnO and P-bearing minerals are moving in the same direction as the Fe-bearing minerals, and therefore any increase in Fe content will also result in an increase of these contaminants. Then, to increase the Fe content, the amount of quartz to E2 will need to be significantly decreased to the point it offsets the movement of , MnO and P to product (E2). As shown in Table 4, quartz has a strong tendency to acquire a negative charge, and therefore in the absence of other minerals having an apparent negative charging behavior it will be possible to considerably decrease its content to product (E2) by means of a first pass using the triboelectrostatic belt separator technology.

For instance, if we assume that all the Fe content in the tailings sample is associated to goethite (FeO(OH)), and that the only gangue oxides are SiO2, Al2O3 a MnO, then Fe content to product would be given by:

Fe(%)=(100-SiO2 – (Al2 O3 + MnO*0.6285

kde, 0.6285 is the percentage of Fe in pure goethite. Eq.4 depicts the competing mechanism that takes place to concentrate Fe as AL2O3 + MnO increases while SiO2 decreases.

For the itabirite sample the Fe content was measured at 47.68%. XRD data indicates that the predominant phase is hematite and therefore the maximum achievable Fe content if a clean separation was possible would be close to 69.94% (which is the Fe content of pure hematite). As it was discussed for the tailings sample a clean separation won’t be possible as CaO, Mgo, Al2 O3 bearing minerals are moving in the same direction as hematite, and therefore to increase Fe content SiO2 content must be reduced. Assuming that the entirety of the Fe content in this sample is associated to hematite (Fe2O3) and that the only oxides contained in gangue minerals are SiO2, CaO, Mgo, Al2O3 a MnO; then Fe content in the product would be given by:

Fe(%)=(100-SiO2-CaO+MgO+Al2O3+MnO+LOI*0.6994

kde, 0.6994 is the percentage of Fe in pure hematite. It must be noticed that Eq.5 includes LOI, while Eq.4 does not. For the itabirite sample, the LOI is associated to the presence of carbonates while for the tailings sample it is associated to Fe-bearing minerals.

Evidently, for both tailings and itabirite samples it is possible to significantly increase the Fe content by reducing the content of SiO2; Avšak, as shown in Eq.4 and Eq.5, the maximum achievable Fe content will be limited by the direction of movement and the concentration of oxides associated to gangue minerals.

In principle, the concentration of Fe in both samples could be further increased by means of a second pass on the STET separator in which CaO,Mgo Al2 O3 a MnObearing minerals could be separated from Fe-bearing minerals. Such separation would be possible if most of quartz in the sample was removed during a first pass. In the absence of quartz, some of the remaining gangue minerals should in theory charge in the opposite direction of goethite, hematite and magnetite, which would result in increased Fe content. For instance, for the itabirite sample and based in the location of dolomite and hematite in the triboelectrostatic series (Pozri tabuľku 4), dolomite/hematite separation should be possible as dolomite has a strong tendency to charge positive in relation to hematite.

Having discussed on the maximum achievable Fe contents a discussion on the feed requirements for the technology is needed. The STET tribo-electrostatic belt separator requires the feed material to be dry and finely ground. Very small amounts of moisture can have a large effect on differential tribo-charging and therefore the feed moisture should be decreased to <0.5 WT .%. okrem toho, the feed material should be ground sufficiently fine to liberate gangue materials and should be at least 100% passing mesh 30 (600 Služby um). At least for the tailings sample, the material would have to be dewatered followed by a thermal drying stage, while for the itabirite sample grinding coupled with, or follow by, thermal drying would be necessary prior to beneficiation with the STET separator.

The tailings sample was obtained from an existing desliming-flotation-magnetic concentration circuit and collected directly from a tailings dam. Typical paste moistures from tailings should be around 20-30% and therefore the tailings would need to be dried by means of liquid-solid separation (dewatering) followed by thermal drying and deagglomeration. The use of mechanical dewatering prior to drying is encouraged as mechanical methods have relative low energy consumption per unit of liquid removed in comparison to thermal methods. About 9.05 Btu are required per pound of water eliminated by means of filtration while thermal drying, na druhej strane, requires around 1800 Btu per pound of water evaporated [13]. The costs associated with the processing of iron tailings will ultimately depend on the minimum achievable moisture during dewatering and on the energetic costs associated with drying.

The itabirite sample was obtained directly from an itabirite iron formation and therefore to process this sample the material would need to undergo crushing and milling followed by thermal drying and deagglomeration. One possible option is the use of hot air swept roller mills, in which dual grinding and drying could be achieved in a single step. The costs associated with the processing of itabirite ore will depend on the feed moisture, feed granulometry and on the energetic costs associated to milling and drying.

For both samples deagglomeration is necessary after the material have been dried to ensure particles are liberated from one another. Deagglomeration can be performed in conjunction to the thermal drying stage, allowing for efficient heat transfer and energy savings.

Závery

The bench-scale results presented here demonstrates strong evidence of charging and separation of Fe-bearing minerals from quartz using triboelectrostatic belt separation.

For the tailings sample Fe content was increased from 29.89% na 53.75%, on average, at a mass yield of 23.30%, which corresponds to Fe recovery and silica rejection values of 44.17% a 95.44%, v uvedenom poradí. For the itabirite sample Fe content was increased from 47.68 % na 57.62%, on average, at a mass yield of 65.0%, which corresponds to Fe recovery and silica rejection values of 82.95% a 86.53%, v uvedenom poradí. These results were completed on a separator that is smaller and less efficient than the STET commercial separator.

Experimental findings indicate that for both tailings and itabirite samples the maximum achievable Fe content will depend on the minimum achievable quartz content. okrem toho, achieving higher Fe grades may be possible by means of a second pass on the STET belt separator.

Výsledky tejto štúdie preukázali, že pokuty za železnú rudu nízkej kvality možno vylepšiť pomocou triboelistatického odlučovača pásov STET.. Further work at the pilot plant scale is recommended to determine the iron concentrate grade and recovery that can be achieved. Based on experience, zhodnocovanie produktu a/alebo trieda sa výrazne zlepší pri pilotnom spracovaní, v porovnaní so skúšobným zariadením na skúšobnej úrovni použitým počas týchto skúšok železnej rudy. The STET tribo-electrostatic separation process may offer significant advantages over conventional processing methods for iron ore fines.

Referencie

  • Lu, L. (Ed.). (2015), "Železnej rudy: Mineralogy, Spracovanie a udržateľnosť životného prostredia ", Elsevier.
  • Ferreira, H., & Leite, M. G. P. (2015), "Hodnotenie životného cyklu štúdie ťažby železnej rudy", Časopis čistejšie výroby, 108, 1081-1091.
  • Li, Q., Dai, T., Wang, G., Cheng, J., Zhong, W., Wen, B., & Liang, L. (2018), "Analýza toku železných materiálov pre výrobu, Spotrebu, a obchodu v Číne z 2010 na 2015 ", Časopis čistejšie výroby, 172, 1807-1813.
  • Nogueira, P. V., Rocha, M. P., Borges, W. R., Silva, A. M., & de Assis, L. M. (2016), "Štúdium železa vklad pomocou seizmickej refrakčnej a merný odpor v carajás minerálne provincie, Brazília, Vestník aplikovaných geofyziky, 133, 116-122.
  • Filippov, L. O., Severov, V. V., & Filippova, I. V. (2014), "Prehľad o beneficiovaní železných rúd cez reverzné katiónové flotácie", Medzinárodný časopis pre spracovanie nerastov, 127, 62-69.
  • Rosière, C. A., & Brunnacci-Ferreira-Santos, N. "Dolomitic Itabirites a generácie uhličitanov v Cauê formácie, Quadrilátero Ferrífero ".
  • Sahoo, H., Rath, S. S., RAO, D. S., Mishra, B. K., & Das, B. (2016), "Úloha obsahu oxidu kremičitého a oxidu hlinitého v flotácii železných rúd", Medzinárodný časopis pre spracovanie nerastov, 148, 83-91.
  • Luo, X., Wang, Y., Wen, S., Ma, M., Slnko, C., Yin, W., & Ma, Y. (2016), "Vplyv uhličitanov na kremíkové flotačné správanie za podmienok reverznej aniónovej flotácie železných rúd", Medzinárodný časopis pre spracovanie nerastov, 152, 1-6.
  • Jang, K. O., Nunna, V. R., Hapugoda, S., Nguyen, A. V., & Bruckard, W. J. (2014), "Chemická a minerálna transformácia nízkeho stupňa goethitu rudy dehydroxyláciou, redukcia praženia a magnetickej separácie ", Minerálne inžinierstvo, 60, 14-22.
  • Da Silva, F. L., Araújo, F. G. S., Teixeira, M. P., Gomes, R. C., & Von Krüger, F. L. (2014), "Štúdium obnovy a recyklácie hlušina z koncentrácie železnej rudy na výrobu keramických", Keramika medzinárodnej, 40(10), 16085-16089.
  • Mirkowska, M., Kratzer, M., Teichert, C., & Flachberger, H. (2016), "Hlavné faktory kontaktného nabíjania minerálov pre úspešný proces triboelektrostatickej separácie – preskúmanie", Hauptfaktoren der Triboaufladung von Mineralphasen für eine erfolgreiche elektrostatische Trennung–ein Überblick. BHM Berg-und Hüttenmännische Monatshefte, 161(8), 359-382.
  • Ferguson, D. N. (2010), "Základná triboelektrická séria pre ťažké minerály z induktívneho elektrostatického separačného správania", Časopis Juhoafrického inštitútu baníctva a metalurgie, 110(2), 75-78.
  • Fuerstenau, M. C., & Han, K. N. (Eds, čo sa hovorí.). (2003), "Separácia kvapalnej a tuhej látky", Princípy spracovania nerastov, Msp.