ST equips & Technology has developed a processing system based on triboelectrostatic belt separation that provides the mineral processing industry a means to beneficiate fine materials with an entirely dry technology…
Descarregar PDFExpanding Applications in Dry Triboelectric
Separation of Minerals
James D. Bittner, Kyle P. Flynn, i Frank J. Hrach
ST equips & Tecnologia LLC, Needham Massachusetts 02494 EUA
Tel: +1‐781‐972‐2300, email: jbittner@titanamerica.com
ABSTRACT
ST equips & Tecnologia, LLC (STET) has developed a processing system based on triboelectrostatic belt separation that provides the mineral processing industry a means to beneficiate fine materials with an entirely dry technology. In contrast to other electrostatic separation processes that are typically limited to particles greater than 75μm in size, El separador de cinturons triboelèctric és ideal per a la separació de molt fines (<1μm) a un gruix moderat (300μm) partícules amb un rendiment molt alt. The high efficiency multi‐stage separation through internal charging/recharging and recycle results in far superior separations that can be achieved with a conventional single‐stage free‐ fall triboelectrostatic separator. La tecnologia de separador de corretja triboelèctrica s'ha utilitzat per separar una àmplia gamma de materials, incloses les mescles d'aluminosilicats vidriosos / carboni, Calcita / quars, talc/magnesita, i barita/quars. An economic comparison of using the triboelectrostatic belt separation versus conventional flotation for barite / separació de quars il·lustra els avantatges del tractament sec de minerals.
Paraules clau: Minerals, dry separation, baritat, triboelectrostatic charging, Separador de cinturons, cendra volant
INTRODUCCIÓ
La manca d'accés a l'aigua dolça s'està convertint en un factor important que afecta la viabilitat dels projectes miners a tot el món. Segons Hubert Fleming, exdirector global de Hatch Water, "De tots els projectes miners del món que s'han aturat o alentit durant l'últim any, Ha estat, en gairebé 100% dels casos, resultat de l'aigua, either directly or indirectly” Blin (2013). Dry mineral processing methods offer a solution to this looming problem.
Wet separation methods such as froth flotation require the addition of chemical reagents that must be handled safely and disposed of in an environmentally responsible manner. Inevitably it is not possible to operate with 100% water recycle, requiring disposal of at least of portion of the process water, likely containing trace amounts of chemical reagents.
Els mètodes secs com la separació electrostàtica eliminaran la necessitat d'aigua dolça, i ofereixen el potencial de reduir costos. One of the most promising new developments in dry mineral separations is the triboelectrostatic belt separator. Aquesta tecnologia ha ampliat el rang de mida de partícules a partícules més fines que les tecnologies convencionals de separació electrostàtica., en el rang on només la flotació ha tingut èxit en el passat.
1
TRIBOELECTROSTATIC BELT SEPARATION
The triboelectrostatic belt separator utilizes electrical charge differences between materials produced by surface contact or triboelectric charging. Quan els dos materials en contacte, material with a higher affinity for electrons gains electrons and thus charges negative, mentre que el material amb menor afinitat electrònica carrega positiu. Aquest intercanvi contacte de forma gratuïta s'observa universalment per a tots els materials, de vegades causant molèsties electrostàtica que són un problema en algunes indústries. Electron affinity is dependent on the chemical composition of the particle surface and will result in substantial differential charging of materials in a mixture of discrete particles of different composition.
In the triboelectrostatic belt separator (Figures 1 i 2), el material s'alimenta a la fina bretxa 0.9 - 1.5 cm (0.35 ‐0.6 in.) between two parallel planar electrodes. Les partícules triboelectrically paguen per contacte interparticle. Per exemple, En el cas de les cendres volants de combustió del carbó, una barreja de partícules de carboni i partícules minerals, El carboni carregat positivament i el mineral carregat negativament són atrets per elèctrodes oposats. The particles are then swept up by a continuous moving open‐mesh belt and conveyed in opposite directions. El cinturó mou les partícules adjacents a cada elèctrode cap a extrems oposats del separador. The electric field need only move the particles a tiny fraction of a centimeter to move a particle from a left‐moving to a right‐moving stream. The counter current flow of the separating particles and continual triboelectric charging by carbon‐mineral collisions provides for a multistage separation and results in excellent purity and recovery in a single‐pass unit. L'alta velocitat del cinturó també permet rendiments molt alts, fins a 40 tones per hora en un únic separador. Controlant diversos paràmetres del procés, Com la velocitat del cinturó, punt d'alimentació, Bretxa d'elèctrode i velocitat d'alimentació, El dispositiu produeix cendres volants baixes en carboni amb contingut de carboni de 2 % ± 0.5% a partir de cendres volants d'alimentació que van en carboni de 4% per sobre 30%.
Figura 1. Esquema del separador de cinturons triboelèctrics
El disseny del separador és relativament senzill. El cinturó i rodets associats són les úniques parts en moviment. Els elèctrodes són estacionaris i formada per un material durable adequadament. El cinturó està fet de material plàstic. La longitud de l'elèctrode del separador és aproximadament 6 metres (20 peus.) i l'amplada 1.25 metres (4 peus.) per a unitats comercials de mida completa. El consum de poder és sobre 1 kilowatt‐hour per tonne of material processed with most of the power consumed by two motors driving the belt.
2
Figura 2. Detall de la zona de separació
El procés és totalment sec, No requereix materials addicionals i no produeix aigües residuals ni emissions d'aire.. En el cas de carboni procedent de separacions de cendres volants, Els materials recuperats consisteixen en cendres volants reduïdes en contingut de carboni a nivells adequats per al seu ús com a barreja pozzolanica en formigó, i una elevada fracció de carboni que es pot cremar a la planta generadora d'electricitat. La utilització d'ambdós fluxos de productes proporciona un 100% Solució als problemes d'eliminació de cendres volants.
The triboelectrostatic belt separator is relatively compact. Una màquina destinada a processar 40 tones per hora és aproximadament 9.1 metres (30 M) llarg, 1.7 metres (5.5 peus.) ample i 3.2 metres (10.5 peus.) alta. L'equilibri necessari de la planta consisteix en sistemes per transportar material sec des de i cap al separador. La compacitat del sistema permet flexibilitat en els dissenys d'instal·lació.
Figura 3. Commercial triboelectrostatic belt separator
Comparison to other electrostatic separation processes
The triboelectrostatic belt separation technology greatly expands the range of materials that can be beneficiated by electrostatic processes. The most commonly used electrostatic processes rely on differences in the electrical conductivity of the materials to be separated. In these processes, the material must contact a grounded drum or plate typically after the material particles are negatively charged by an ionizing corona discharge. Conductive materials will lose their charge quickly and be thrown from the drum. The non‐conductive material continues to be attracted to the drum since the
3
charge will dissipate more slowly and will fall or be brushed from the drum after separation from the conducting material. These processes are limited in capacity due to the required contact of every particle to the drum or plate. The effectiveness of these contact charging processes are also limited to particles of about 100 μm or greater in size due to both the need to contact the grounded plate and the required particle flow dynamics. Particles of different sizes will also have different flow dynamics due to inertial effects and will result in degraded separation. The following diagram (Figura 4) illustrates the fundamental features of this type of separator.
Figura 4. Drum electrostatic separator “Elder (2003)”
Triboelectrostatic separations are not limited to separation of conductive / non‐conductive materials but depend on the well known phenomenon of charge transfer by frictional contact of materials with dissimilar surface chemistry. This phenomenon has been used in “free fall” separation processes for decades. Such a process is illustrated in Figure 5. Components of a mixture of particles first develop different charges by contact either with a metal surface, or by particle to particle contact in a fluidized bed feeding device. As the particles fall through the electric field in the electrode zone, each particle’s trajectory is deflected toward the electrode of opposite charge. After a certain distance, collection bins are employed to separate the streams. Typical installations require multiple separator stages with recycle of a middling fraction. Some devices use a steady stream of gas to assist the conveying of the particles through the electrode zone.
4
Figura 5. “Free fall” triboelectrostatic separator
This type of free fall separator also has limitations in the particle size of the material that can be processed. The flow within the electrode zone must be controlled to minimize turbulence to avoid “smearing” of the separation. The trajectory of fine particles are more effected by turbulence since the aerodynamic drag forces on fine particles are much larger than the gravitational and electrostatic forces. The very fine particles will also tend to collect on the electrode surfaces and must be removed by some method. Particles of less than 75 μm cannot be effectively separated.
Another limitation is that the particle loading within the electrode zone must be low to prevent space charge effects, which limit the processing rate. Passing material through the electrode zone inherently results in a single‐stage separation, since there is no possibility for re‐charging of particles. Per tant, multi‐stage systems are required for improving the degree of separation including re‐charging of the material by subsequent contact with a charging device. The resulting equipment volume and complexity increases accordingly.
In contrast to the other available electrostatic separation processes, the triboelectrostatic belt separator is ideally suited for separation of very fine (<1 μm) a un gruix moderat (300μm) materials with very high throughputs. The triboelectric particle charging is effective for a wide range of materials and only requires particle – particle contact. Del buit, alt camp elèctric, counter current flow, vigorous particle‐particle agitation and self‐cleaning action of the belt on the electrodes are the critical features of the separator. The high efficiency multi‐stage separation through charging / recharging and internal recycle results in far superior separations and is effective on fine materials that cannot be separated at all by the conventional techniques.
5
APPLICATIONS OF TRIBOELECTROSTATIC BELT SEPARATION
Cendra volant
The triboelectrostatic belt separation technology was first applied industrially to the processing of coal combustion fly ash in 1995. For the fly ash application, the technology has been effective in separating carbon particles from the incomplete combustion of coal, de les partícules minerals d'aluminosilicat vívides a la cendra de la mosca. The technology has been instrumental in enabling recycle of the mineral‐rich flyash as a cement replacement in concrete production. Des que 1995, 19 triboelectrostatic belt separators have been operating in the USA, Canadà, Regne Unit, and Poland, processing over 1,000,000 tonnes of fly ash annually. The technology is now also in Asia with the first separator installed in South Korea this year. La història industrial de la separació de cendres de mosca apareix a la taula 1.
Taula 1 |
Industrial Application of Triboelectrostatic belt separation for fly ash |
|
||
Utilitat / central elèctrica |
Ubicació |
Start of |
Instal·lació |
|
|
|
|
industrial |
details |
|
|
|
operations |
|
Duke Energy - Estació Roxboro |
Carolina del Nord Estats Units |
1997 |
2 Separadors |
|
Raven Power‐ Brandon Shores |
Maryland Estats Units |
1999 |
2 Separadors |
|
Scottish Power‐ Longannet Station |
Escòcia Regne Unit |
2002 |
1 Separador |
|
Jacksonville Electric‐St. John’s |
Florida Estats Units |
2003 |
2 Separadors |
|
River Power Park |
|
|
|
|
South Mississippi Electric Power ‐ |
Mississipí Estats Units |
2005 |
1 Separador |
|
R.D. Demà |
|
|
|
|
New Brunswick Power‐Belledune |
Nova Brunsvic Canadà |
2005 |
1 Separador |
|
RWE npower‐Didcot Station |
Anglaterra Regne Unit |
2005 |
1 Separador |
|
PPL‐Brunner Island Station |
Pennsilvània Estats Units |
2006 |
2 Separadors |
|
Tampa Electric‐Big Bend Station |
Florida Estats Units |
2008 |
3 Separadors, |
|
|
|
|
|
double pass |
RWE npower‐Aberthaw Station |
Gal·les Regne Unit |
2008 |
1 Separador |
|
EDF Energy‐West Burton Station |
Anglaterra Regne Unit |
2008 |
1 Separador |
|
ZGP (Lafarge Cement Poland / |
Polònia |
2010 |
1 Separador |
|
Ciech Janikosoda JV) |
|
|
|
|
Korea Southeast Power‐ Yong |
Corea del Sud |
2014 |
1 Separador |
|
Heung |
|
|
|
|
Mineral Applications
Electrostatic separations have been extensively used for beneficiation for a large range of minerals “Manouchehri‐Part 1 (2000)”. While most application utilize differences in electrical conductivity of materials with the corona‐drum type separators, triboelectric charging behavior with free‐fall separators is also used at industrial scales “Manouchehri‐Part 2 (2000)”. A sample of applications of triboelectrostatic processing reported in the literature is listed in Table 2. While this is not an exhaustive listing of applications, this table illustrates the potential range of applications for electrostatic processing of minerals.
Taula 2. Reported triboelectrostatic separation of minerals
Mineral Separation |
Reference |
Triboelectrostatic belt |
|
|
separation Experience |
|
|
|
Potassium Ore – Halite |
4,5,6,7 |
YES |
Talc – Magnesite |
8,9,10 |
YES |
Limestone – quartz |
8,10 |
YES |
Brucite – quartz |
8 |
YES |
Iron oxide – silica |
3,7,8,11 |
YES |
Phosphate – calcite – silica |
8,12,13 |
|
Mica ‐ Feldspar – quartz |
3,14 |
|
Wollastonite – quartz |
14 |
YES |
Boron minerals |
10,16 |
YES |
Barites – Silicates |
9 |
YES |
Zircon – Rutile |
2,3,7,8,15 |
|
Zircon‐Kyanite |
|
YES |
Magnesite‐Quartz |
|
YES |
Silver and gold slags |
4 |
|
Carbon – Aluminosilicates |
8 |
YES |
Beryl – quartz |
9 |
|
Fluorite – silica |
17 |
YES |
Fluorite – Barite ‐ Calcite |
4,5,6,7 |
|
|
|
|
Extensive pilot plant and field testing of many challenging material separations in the minerals industry have been conducted using the triboelectrostatic belt separator. Examples of separation results are shown in Table 3.
7
Taula 3. Examples, mineral separations using triboelectrostatic belt separation
Mineral |
Carbonat de calci |
TALC |
|
|
|
|
|
Separated materials |
CaCO3 – SiO2 |
TALC / Magnesita |
|
Feed composition |
90.5% CaCO3 |
/ 9.5% SiO2 |
58% talc / 42% Magnesita |
Product composition |
99.1% CaCO3 |
/ 0.9% SiO2 |
95% talc / 5% Magnesita |
Mass yield product |
82% |
46% |
|
Mineral recovery |
89% CaCO3 |
Recuperació |
77% Talc Recovery |
|
|
|
|
Use of the triboelectrostatic belt separator has been demonstrated to effectively beneficiate many mineral mixtures. Since the separator can process materials with particle sizes from about 300 μm to less than 1 μm, and the triboelectrostatic separation is effective for both insulating and conductive materials, the technology greatly extends the range of applicable material over conventional electrostatic separators. Since the triboelectrostatic process is entirely dry, use of it eliminates the need for material drying and liquid waste handling from flotation processes.
COST OF TRIBOELECTROSTATIC BELT SEPARATION
Comparison to Conventional Flotation for Barite
A comparative cost study was commissioned by STET and conducted by Soutex Inc. Soutex is a Quebec Canada based engineering company with extensive experience in both wet flotation and electrostatic separation process evaluation and design. The study compared the capital and operating costs of triboelectrostatic belt separation process to conventional froth flotation for the beneficiation of a low‐grade barite ore. Both technologies upgrade the barite by removal of low density solids, mainly quartz, to produce an American Petroleum Institute (Api) drilling grade barite with SG greater than 4.2 g/ml. Flotation results were based on pilot plant studies conducted by the Indian National Mettalurgical Laboratory “NML (2004)”. Triboelectrostatic belt separation results were based on pilot plant studies using similar feed ores. The comparative economic study included flowsheet development, material and energy balances, major equipment sizing and quotation for both flotation and triboelectrostatic belt separation processes. The basis for both flowsheets is the same, processament 200,000 t/y of barite feed with SG 3.78 to produce 148,000 t/y of drilling grade barite product with SG 4.21 g/ml. The flotation process estimate did not include any costs for process water, or water treatment.
Flowsheets were generated by Soutex for the barite flotation process (Figura 6), and triboelectrostatic belt separation process (Figura 7).
8
Figura 6 Barite flotation process flowsheet
9
Figura 7 Barite triboelectrostatic belt separation process flowsheet
Theses flowsheets do not include a raw ore crushing system, which is common to both technologies. Feed grinding for the flotation case is accomplished using a wet pulp ball mill with cyclone classifier. Feed grinding for the triboelectrostatic belt separation case is accomplished using a dry, vertical roller mill with integral dynamic classifier.
The triboelectrostatic belt separation flowsheet is simpler than flotation. Triboelectostatic belt separation is achieved in a single stage without the addition of any chemical reagents, compared to three‐stage flotation with oleic acid used as a collector for barite and sodium silicate as a depressant for the silica gangue. A flocculant is also added as a reagent for thickening in the barite flotation case. No dewatering and drying equipment is required for triboelectrostatic belt separation, compared to thickeners, filter presses, and rotary dryers required for the barite flotation process.
10
Capital and Operating Costs
A detailed capital and operating cost estimate was performed by Soutex for both technologies using equipment quotations and the factored cost method. The operating costs were estimated to include operating labor, maintenance, energy (electrical and fuel), and consumables (per exemple,, chemical reagent costs for flotation). The input costs were based on typical values for a hypothetical plant located near Battle Mountain, Nevada USA. The total cost of ownership over ten years was calculated from the capital and operating cost by assuming an 8% discount rate. The results of cost comparison are present as relative percentages in Table 4
Taula 4. Cost Comparison for Barite Processing
|
Benefici humit |
Benefici sec |
Tecnologia |
Flotació froth |
Triboelectrostatic belt separation |
|
|
|
Purchased Major Equipment |
100% |
94.5% |
Total CAPEX |
100% |
63.2% |
Annual OPEX |
100% |
75.8% |
Unitary OPEX ($/ton conc.) |
100% |
75.8% |
Total Cost of Ownership |
100% |
70.0% |
|
|
|
The total purchase cost of capital equipment for the triboelectrostatic belt separation process is slightly less than for flotation. However when the total capital expenditure is calculated to include equipment installation, piping and electrical costs, and process building costs, the difference is large. The total capital cost for the triboelectrostatic belt separation process is 63.2% of the cost of the flotation process. The significantly lower cost for the dry process results from the simplier flowsheet. The operating costs for the triboelectrostatic belt separation process is 75.5% of the flotation process due to mainly lower operating staff requirements and lower energy consumption.
The total cost of ownership of the triboelectrostatic belt separation process is significantly less than for flotation. The study author, Soutex Inc., concluded that the triboelectrostatic belt separation process offers obvious advantages in CAPEX, Preuo opex, and operational simplicity.
11
CONCLUSION
The triboelectrostatic belt separator provides the mineral processing industry a means to beneficiate fine materials with an entirely dry technology. The environmentally friendly process can eliminate wet processing and required drying of the final material. The process requires little, if any, pre‐treatment of the material other than grinding and operates at high capacity – up to 40 tonnes per hour by a compact machine. Energy consumption is low, less than 2 kWh/tonne of material processed. Since the only potential emission of the process is dust, permitting is relatively easy.
A cost study comparing the triboelectrostatic belt separation process to conventional froth flotation for barite was completed by Soutex Inc. The study shows that the total capital cost for for the dry triboelectrostatic belt separation process is 63.2% of the flotation process. The total operating cost for tribo electrostatic belt separation is 75.8% of operating cost for flotation. The study’s author concludes that the dry, triboelectrostatic belt separation process offers obvious advantages in CAPEX, Preuo opex, and operational simplicity.
12
REFERENCES
1.Blin, P & Dion‐Ortega, A (2013) Alt i sec, Revista CIM, vol. 8, no hi ha. 4, PP. 48‐51.
2.Elder, J. & Yan, E (2003) eForce.‐ Newest generation of electrostatic separator for the minerals sands industry, Heavy Minerals Conference, Johannesburg, South African Institute of Mining and Metallurgy.
3.Manouchehri, H, Hanumantha Roa,K, & Foressberg, K (2000), Revisió dels mètodes de separació elèctrica, Part 1: Aspectes fonamentals, Minerals & Processament metal·lúrgic, vol 17, no hi ha. 1 PP 23 - 36.
4.Manouchehri, H, Hanumantha Roa, K, & Foressberg, K (2000), Revisió dels mètodes de separació elèctrica, Part 2: Consideracions pràctiques, Minerals & Processament metal·lúrgic, vol 17, no hi ha. 1 pp 139‐ 166.
5.Searls, J (1985) Potassa, Chapter in Mineral Facts and Problems: 1985 Edition, United States Bureau of Mines, Washington DC.
6.Berthon, R & Bichara, M, (1975) Electrostatic Separation of Potash Ores, United States Patent # 3,885,673.
7.Marques, L, Beier, P, & Stahl, Jo (2005) Separació electrostàtica, Wiley‐VCH verlag, GmbH & Co.
8.Fraas, F (1962) Electrostatic separation of Granular Materials, US Bureau of Mines, Bulletin 603.
9.Fraas, F (1964), Pretreatment of minerals for electrostatic separation, US Patent 3,137,648.
10.Lindley, K & Rowson, N (N) (1997) Feed preparation factors affecting the efficiency of electrostatic separation, Magnetic and Electrical Separation, vol 8 pp 161‐173.
11.Inculet, Jo (1984) Electrostatic Mineral Separation, Electrostatics and Electrostatic Applications Series, Research Studies Press, Ltd, John Wiley & Sons, Inc.
12.Feasby, D (1966) Free‐Fall Electrostatic Separation of Phosphate and Calcite Particles, Minerals Research Laboratory, Labs Nos. 1869, 1890, 1985, 3021, i 3038, book 212, Progress Report.
13.Stencel, J & Jiang, X (2003) Pneumatic Transport, Triboelectric Beneficiation for the Florida Phosphate Industry, Florida Institute of Phosphate Research, Publication No. 02‐149‐201, Desembre.
14.Manouchehri, H, Hanumantha R, & Foressberg, K (2002), Triboelectric Charge, Electrophysical properties and Electrical Beneficiation Potential of Chemically Treated Feldspar, Quars, and Wollastonite, Magnetic and Electrical Separation, vol 11, no 1‐2 pp 9‐32.
15.Venter, J, Vermaak, M, & Bruwer, J (2007) Influence of surface effects on the electrostatic separation of zircon and rutile, The 6th International Heavy Minerals Conference, The Southern African Institute of Mining and Metallurgy.
16.Celik, M and Yasar, E (1995) Effects of Temperature and Impurities on Electrostatic Separation of Boron Materials, Minerals Engineering, vol. 8, no hi ha. 7, PP. 829‐833.
17.Fraas, F (1947) Notes on Drying for Electrostatic Separation of Particles, AIME Tec. Pub 2257, Novembre.
18.NML (2004) Beneficiation of low grade barite (pilot plant results), Final Report, National Metallurgical Laboratory, Jamshedpur India, 831 007
13