Benefiċjazzjoni tal-minerali tal-ħadid

Il-mineral tal-ħadid huwa r-raba ' element l-aktar komuni fil-qoxra tad-dinja. Il-ħadid huwa essenzjali għall-manifattura tal-azzar u għalhekk materjal essenzjali għall-iżvilupp ekonomiku globali. Il-ħadid jintuża wkoll ħafna fil-kostruzzjoni u l-manifattura tal-vetturi. Il-bi ċċa l-kbira ta ' riżorsi ta ' minerali tal-ħadid huma magħmulin minn formazzjonijiet ta ' ħadid banded (BIF) li fih il-ħadid jinstab komunement fil-forma ta ' ossidi, idrossidi u sa ċertu punt il-karbonati.

Il-kompo żizzjoni kimika tal-minerali tal-ħadid għandha firxa wiesgħa apparenti fil-kompo żizzjoni kimika speċjalment għall-kontenut ta ' FE u l-minerali tal-gangue assoċjati. Minerali kbar tal-ħadid assoċjati mal-bi ċċa l-kbira tal-minerali tal-ħadid huma hematite, goethite, limonite u manjetite. Il-kontaminanti ewlenin fil-minerali tal-ħadid huma SiO2 u Al2O3. Is-silika tipika u l-alumina li jġorru l-minerali preżenti fil-minerali tal-ħadid huma l-kwarz, kaolinite, gibbsite, il-pori tad-dijaspora u l-korundun. Minn dawn ta ' spiss jiġi osservat li l-kwarz huwa l-mineral prinċipali li jkollu l-silica u l-kaolinite u l-gibbsite huma l-minerali taż-żewġ l-alumina prinċipali li jġorru.

iron ore beneficiation
fine iron ore separation

L-estrazzjoni tal-minerali tal-ħadid titwettaq prinċipalment permezz ta ' operazzjonijiet ta ' tħaffir fil-minjieri miftuħa, li jirriżultaw f ' ġenerazzjoni sinifikanti ta ' truf. Is-sistema ta ' produzzjoni ta ' minerali tal-ħadid normalment tinvolvi tliet stadji: Minjieri, proċessar u attivitajiet ta ' petizzanti. Ta ' dawn il-, l-ippro ċessar jiżgura li jinkiseb grad adegwat ta ' ħadid u kimika qabel l-istadju ta ' petizzanti. L-ippro ċessar jinkludi tgħaffiġ, Klassifikazzjoni, Tħin, and concentration aiming at increasing the iron content while reducing the amount of gangue minerals. Kull depożitu minerali għandu l-karatteristi ċi uniċi tiegħu rigward il-minerali li jġorru l-ħadid u l-gangue, u għalhekk teħtieġ teknika ta ' konċentrazzjoni differenti.

Magnetic separation is typically used in high-grade iron ore beneficiation where the dominant iron minerals are ferro and paramagnetic. Separazzjoni manjetika b ' intensità baxxa mxarrba u niexfa (LIMS) tekniki huma użati għall-proċess ta ' minerali bi proprjetajiet manjetiċi qawwija bħal manjetite filwaqt li s-separazzjoni manjetika ta ' intensità għolja mxarrba hija użata biex tissepara l-minerali li jġorru l-FE bi proprjetajiet manjetiċi dgħajfa bħal hematite mill-minerali tal-gangue. Minerali tal-ħadid tali goethite u limonite huma komunement misjuba fil-trufijiet u ma jisseparax tajjeb ħafna minn kwalunkwe teknika.

iron ore

Il-flotazzjoni tintuża biex tnaqqas il-kontenut tal-impuritajiet fil-minerali tal-ħadid ta' grad baxx. Iron ores can be concentrated either by direct anionic flotation of iron oxides or reverse cationic flotation of silica, however reverse cationic flotation remains the most popular flotation route used in the iron industry. The use of flotation its limited by the cost of reagents, the presence of silica and alumina-rich slimes and the presence of carbonate minerals. Madanakollu, flotation requires waste water treatment and the use of downstream dewatering for dry final applications.

The use of flotation for the concentration of iron also involves desliming as floating in the presence of fines results in decreased efficiency and high reagent costs. Desliming is particularly critical for the removal of alumina as the separation of gibbsite from hematite or goethite by any surface-active agents is quite difficult. Most of alumina bearing minerals occurs in the finer size range (<20um) allowing for its removal through desliming. Overall, a high concentration of fines (<20um) and alumina increases the required cationic collector dose and decreases selectivity dramatically. Therefore desliming increases flotation efficiency, but results in a large volume of tailings and in loss of iron to the tailings stream.

Dry processing of iron ore presents an opportunity to eliminate costs and wet tailings generation associated with flotation and wet magnetic separation circuits. STET has evaluated several iron ore tailings and run of mine ore samples at bench scale (pre-feasibility scale). Significant movement of iron and silicates was observed, with examples highlighted in the table below.

screen-shot-new

The results of this study demonstrated that low-grade iron ore fines can be upgraded by means of STET tribo-electrostatic belt separator. Based on STET experience, the product recovery and/or grade will significantly improve at pilot scale processing, as compared to the bench-scale test device utilized during these iron ore trials.

The STET dry electrostatic fine iron ore separation process offers many advantages over traditional wet processing methods, such as magnetics or flotation, including:

  • No water consumption. The elimination of water also eliminates pumping, thickening, and drying, kif ukoll kwalunkwe spiża u riskju assoċjat mat-trattament u r-rimi tal-ilma.
  • No wet tailings disposal. Recent high-profile failures of tailings dams have highlighted the long-term risk of storing wet tailings. By necessity, mineral processing operations produce tailings of some sort, but the STET electrostatic separator tailings are free of water and chemicals. This allows for easier beneficial re-use of the tailings. Tailings that do need to be stored can be mixed with a small volume of water for dust control.
  • No chemical addition required. Flotation chemicals are an ongoing operating expense for mineral processing operations.
  • Suitable for processing fine powders. Desliming may not be required depending on ore mineralogy and grade.
  • Lower investment cost (Capex) and lower operating cost (Opex).
  • Ease of permitting due to minimized environmental impact, elimination of water treatment

Contact us to learn more about dry processing of iron ore.

Referenzi:

  • Lu, L. (Ed.). (2015), "Minerali tal-ħadid: Mineraloġija, Ipproċessar u s-Sostenibbiltà Ambjentali", Elsevier.
  • Il-Ferreira, H., & Leite, M. G. P. (2015), "Studju tal-Valutazzjoni taċ-Ċiklu tal-Ħajja tal-minjieri tal-minerali tal-ħadid", Ġurnal ta' produzzjoni aktar nadifa, 108, 1081-1091.
  • Li, Q., Dai, T., Wang, G., Cheng, J., Zhong, W. W., Aħna n-nu, B., & Liang, L. (2018), “Iron material flow analysis for production, consumption, and trade in China from 2010 to 2015”, Journal of Cleaner Production, 172, 1807-1813.
  • Nogueira, P. V., Rocha, M. P., Borges, W. R., Silva, A. M., & de Assis, L. M. (2016), “Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil”, Journal of Applied Geophysics, 133, 116-122.
  • Filippov, L. O., Is-severov, V. V., & Filippova, I. V. (2014), "Ħarsa ġenerali lejn il-benefiċjazzjoni tal-minerali tal-ħadid permezz ta' flotazzjoni katjonika inversa", Ġurnal internazzjonali tal-ipproċessar minerali, 127, 62-69.
  • Rosière, C. A., & Brunnacci-Ferreira-Santos, N. “Dolomitic Itabirites and Generations of Carbonates in the Cauê Formation, Quadrilátero Ferrífero”.
  • Sahoo, H., Il-fama, S. S., Rao, D. S., Mishra, B. K., & Das, B. (2016), "Ir-rwol tas-silika u l-kontenut tal-alumina fil-flotazzjoni tal-minerali tal-ħadid", Il-Ġurnal Internazzjonali tal-Ipproċessar Minerali, 148, 83-91.
  • Luo, X., Wang, Y., Aħna n-nu, S., Ma, M., Xemx, C., Yin, W. W., & Ma, Y. (2016), "Effett tal-minerali tal-karbonat fuq l-imġiba tal-flotazzjoni tal-kwarz taħt kundizzjonijiet ta' flotazzjoni anjonika b'lura ta' minerali tal-ħadid", Il-Ġurnal Internazzjonali tal-Ipproċessar Minerali, 152, 1-6.
  • Jang, K. O., Nunna, V. R., Hapugoda, S., Nguyen, A. V., & Bruckard, W. J. (2014), “Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation”, Minerals engineering, 60, 14-22.
  • Da Silva, F. L., Araújo, F. G. S., Teixeira, M. P., Gomes, R. C., & Von Krüger, F. L. (2014), "Studju tal-irkupru u r-riċiklaġġ ta' tbaxxijiet mill-konċentrazzjoni ta' minerali tal-ħadid għall-produzzjoni taċ-ċeramika", Ċeramika Internazzjonali, 40(10), 16085-16089.
  • Mirkowska, M., Kratzer, M., Teichert, C., & Flachberger, H. (2016), “Principal Factors of Contact Charging of Minerals for a Successful Triboelectrostatic Separation Process–a Review”, Hauptfaktoren der Triboaufladung von Mineralphasen für eine erfolgreiche elektrostatische Trennung–ein Überblick. BHM Berg-und Hüttenmännische Monatshefte, 161(8), 359-382.
  • Ferguson, D. N. (2010), “A basic triboelectric series for heavy minerals from inductive electrostatic separation behavior”, Journal of the Southern African Institute of Mining and Metallurgy, 110(2), 75-78.
  • Fuerstenau, M. C., & Han, K. N. (Eds.). (2003), “Liquid-Solid Separation”, Principles of mineral processing, Iżm.

Bullettini

Literature