Upravičenost do železne ore

Iron ore is the fourth most common element in the earth’s crust. Iron is essential to steel manufacturing and, zato, an essential material for global economic development. Železo se pogosto uporablja tudi v gradbeništvu in proizvodnji vozil. Most iron ore resources are composed of metamorphosed banded iron formations (BIF), pri katerem se železo pogosto nahaja v obliki oksidov, hydroxides, in, to a lesser extent, carbonates.

The chemical composition of iron ores is apparent to be wide, especially for Fe content and associated gangue minerals. Major iron minerals associated with most iron ores are hematite, goethit, limonite, and magnetite. Glavna kontaminanta v železovih oazah sta SiO2 in Al2O3. The typical silica and alumina-bearing minerals present in iron ores are quartz, kaolinita, gibsit, diaspore, and corundum. Od teh, it is often observed that quartz is the main silica-bearing mineral, and kaolinite and gibbsite are the two main alumina-bearing minerals.

iron ore beneficiation
fine iron ore separation

Iron ore extraction is mainly performed through open pit mining operations, privede do znatne proizvodnje. Sistem proizvodnje železne stene običajno vključuje tri faze: Rudarstvo, Predelavo, and pelletizing activities. Processing ensures that an adequate iron grade and chemistry are achieved prior to the pelletizing stage. Obdelava vključuje drobljenje, klasifikacija, Rezkanje, and concentration, with the aim of increasing the iron content while reducing the amount of gangue minerals. Each mineral deposit has its own unique characteristics with respect to iron and gangue-bearing minerals, and therefore, it requires a different concentration technique.

Magnetic separation is typically used in high-grade iron ore beneficiation, where the dominant iron minerals are ferro and paramagnetic. Magnetna ločitev z nizko intenzivnostjo (LIMS) techniques are used to process ores with strong magnetic properties, such as magnetite, while wet high-intensity magnetic separation is used to separate the Fe-bearing minerals with weak magnetic properties, such as hematite, from gangue minerals. Iron ores such as goethite and limonite are commonly found in tailings and do not separate very well by either technique.

iron ore

Flotata se uporablja za zmanjšanje vsebnosti nečistoče v nizkih stopnjah železa. Železne orde se lahko koncentrirajo bodisi z neposredno anionsko flotacijo železovih oksidov bodisi z obratno kationsko flotacijo silicijevega; vendar, reverse cationic flotation remains the most popular flotation route used in the iron industry. The use of flotation is limited by the cost of reagents, the presence of silica and alumina-rich slimes, and the presence of carbonate minerals. Poleg tega, flotation requires wastewater treatment and the use of downstream dewatering for dry final applications.

The use of flotation for the concentration of iron also involves desliming, as floating in the presence of fines results in decreased efficiency and high reagent costs. Desliming je še posebej kritičen za odstranitev aluminija, saj je ločitev gibbita od hematita ali goetita s strani vseh površinsko aktivnih učinkovin precej težavna. Most alumina-bearing minerals occur in the finer size range (<20um), omogočanje njegove odstranitve z razganjanjem. Splošno, visoka koncentracija glob (<20um) in alumina poveča zahtevani kcationični zbiralni odmerek in dramatično zmanjša selektivnost. Zato, desliming increases flotation efficiency but results in a large volume of tailings and in loss of iron to the tailings stream.

Suha obdelava železne stene predstavlja priložnost za odpravo stroškov in proizvodnje mokroga repa, povezanih s flotacijo in mokro magnetno ločevanje vezja. STET has evaluated several iron ore tailings and run-of-mine ore samples at bench scale (lestvica pred izvedljivostjo). Opazili so pomembno gibanje železa in silikatov, primeri, ki so izpostavljeni v spodnji tabeli.

screen-shot-new

Rezultati te študije so pokazali, da je mogoče kazni za železo v nizkih razredih nadgraditi s triboelekrostatskim ločilom STET. Na podlagi izkušenj stet, proizvodov in/ali razreda znatno izboljšali pri obdelavi pilotne lestvice., v primerjavi s preskusno napravo na klopi, ki se uporablja med temi preskušanjih železne.

The STET dry electrostatic fine iron ore separation process offers many advantages over traditional wet processing methods, kot so magneti ali flotata, Vključno:

  • Brez porabe vode. Izločanje vode odpravlja tudi črpanje, Zgoščevanje, in sušenje, stroški in tveganja, povezana z obdelavo in odstranjevanjem vode,.
  • Brez odstranjevanja vlažnih repov. Nedavne odmevne okvare jezov jalovine so izpostavile dolgoročno tveganje shranjevanja mokre jalovine. Po nujnosti, mineral processing operations produce tailings of some sort, but the STET electrostatic separator tailings are free of water and chemicals. This allows for easier and more beneficial re-use of the tailings. Repi, ki jih je treba shraniti, se lahko mešajo z majhno prostornino vode za nadzor prahu.
  • No chemical addition is required. Plavajoče kemikalije so stalni operativni izdatki za postopke predelave mineralov.
  • Primerno za predelavo finih praškov. Desliming morda ni potreben glede na mineralogijo rud in stopnjo.
  • Nižji stroški naložb (CAPEX) in nižji stroški poslovanja (Opex).
  • Lahkotnost dovolitve zaradi zmanjšanega vpliva na okolje, odprava obdelave vode

 

Contact us to learn more about dry processing of iron ore.

Reference:

 

  • Lu, L. (Ed.). (2015), "Železna ore: Mineralogija, Processing, and Environmental Sustainability,” Elsevier.
  • Ferreira, H., & Leite, M. G. P. (2015), “A Life Cycle Assessment study of iron ore mining,” Journal of cleaner production, 108, 1081-1091.
  • Li, Q., Dai, T., Wang, G., Cheng, J., Zhong, W., Wen, B., & Liang, L. (2018), "Analiza pretoka železnega materiala za proizvodnjo, potrošnja, in trgovine na Kitajskem iz 2010 do leta 2015", Journal of Cleaner Production, 172, 1807-1813.
  • Nogueira, P. V., Rocha, M. P., Borges, W. R., Silva, A. M., & de Assis, L. M. (2016), "Študija nahajališča železa z uporabo seizmične refrakcije in odpornosti v mineralni provinci Carajás, Brazilija,” Journal of Applied Geophysics, 133, 116-122.
  • Filippov, L. O., Severov, V. V., & Filippova, Sem. V. (2014), “An overview of the beneficiation of iron ores via reverse cationic flotation,” International journal of mineral processing, 127, 62-69.
  • Rosière, C. A., & Brunnacci-Ferreira-Santos, N. "Dolomitični itabiriti in generacije karbonatov v nastanek Cauê, Quadrilátero Ferrífero".
  • Sahoo, H., Rath, S. S., Rao, D. S., Mishra, B. K., & Das, B. (2016), “Role of silica and alumina content in the flotation of iron ores,” International Journal of Mineral Processing, 148, 83-91.
  • Luo, X., Wang, Y., Wen, S., Ma, M., Sonce, C., Yin, W., & Ma, Y. (2016), “Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores,” International Journal of Mineral Processing, 152, 1-6.
  • Jang, K. O., Nunna, V. R., Hapugoda, S., Nguyen, A. V., & Bruckard, W. J. (2014), “Chemical and mineral transformation of a low-grade goethite ore by dehydroxylation, zmanjšanje praženosti in magnetnega ločevanja", Inženiring mineralov, 60, 14-22.
  • Da Silva, F. L., Araújo, F. G. S., Teixeira, M. P., Gomes, R. C., & Von Krüger, F. L. (2014), “Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic,” Ceramics International, 40(10), 16085-16089.
  • Mirkowska, M., Kratzer, M., Teichert, C., & Flachberger, H. (2016), "Glavni dejavniki kontaktnega polnjenja mineralov za uspešen triboelektrostatični proces ločevanja–pregled", Hauptfaktoren der Triboaufladung von Mineralphasen für eine erfolgreiche elektrostatische Trennung-ein Überblick. BHM Berg-und Hüttenmännische Monatshefte, 161(8), 359-382.
  • Ferguson, D. N. (2010), “A basic triboelectric series for heavy minerals from inductive electrostatic separation behavior,” Journal of the Southern African Institute of Mining and Metallurgy, 110(2), 75-78.
  • Fuerstenau, M. C., & Han, K. N. (Eds.). (2003), “Liquid-Solid Separation,” Principles of mineral processing, Msp.

Frequently Asked Questions

What are the processes of iron ore beneficiation?

Iron ore beneficiation involves a series of processes that aim to improve the purity and quality of raw iron ore. These processes include crushing, mletje, magnetno ločevanje, flotacijo, and gravity separation, depending on the mineralogical characteristics of the ore. Each technique is selected based on the ore’s composition and feasibility to extract the maximum amount of iron while minimizing impurities.

What equipment is used in iron ore mining?

Iron ore mining requires specialized equipment to handle the extraction and processing of ore. Common machinery includes ball mills for grinding, crushers for reducing the size of ore, magnetic separators for separating iron particles from impurities, flotation machines for fine particle separation, and conveyors for transport.

What technologies are used for iron ore beneficiation?

Technologies utilized for iron ore beneficiation include advanced techniques such as dry electrostatic separation, flotacijo, advanced gravity separation, and sensor-based sorting. These technologies aim to efficiently increase the iron content and eliminate contaminants, catering to the growing demand for high-grade iron ore and promoting sustainable mining practices.

How much does iron ore beneficiation cost?

The cost of iron ore beneficiation can vary significantly depending on the specific processes and technologies used, the grade of the raw ore, and the desired purity of the final product. It encompasses capital expenditure (CAPEX), such as equipment and plant construction, and operational expenditure (Opex), including labor, Energije, in potrošnega materiala. It’s essential for companies to evaluate these costs against prospective revenue and market demands to ensure project viability.

 

Glasila

Književnost