Dobroćudnost gvozdene rude

Iron ore is the fourth most common element in the earth’s crust. Iron is essential to steel manufacturing and, zbog toga, an essential material for global economic development. Gvožđe se takođe široko koristi u građevinarstvu i proizvodnji vozila. Most iron ore resources are composed of metamorphosed banded iron formations (BIF), u kojoj se gvožđe obično nalazi u obliku oksida, hydroxides, i, to a lesser extent, carbonates.

The chemical composition of iron ores is apparent to be wide, especially for Fe content and associated gangue minerals. Major iron minerals associated with most iron ores are hematite, getit, limonite, and magnetite. Glavni kontaminanti u rudama gvožđa su SiO2 i Al2O3. The typical silica and alumina-bearing minerals present in iron ores are quartz, Kaolinitisani, gibbsite, dijaspora, i corundum. Od ovih, it is often observed that quartz is the main silica-bearing mineral, and kaolinite and gibbsite are the two main alumina-bearing minerals.

iron ore beneficiation
fine iron ore separation

Vađenje rude gvožđa se uglavnom vrši kroz otvorenu jamu rudarske operacije, što rezultira značajnom generacijom krojenja. Sistem proizvodnje rude gvožđa obično uključuje tri faze: Rudarstvo, obrada, and pelletizing activities. Processing ensures that an adequate iron grade and chemistry are achieved prior to the pelletizing stage. Obrada uključuje razbijanje, Klasifikacija, mlevenje, and concentration, with the aim of increasing the iron content while reducing the amount of gangue minerals. Each mineral deposit has its own unique characteristics with respect to iron and gangue-bearing minerals, and therefore, it requires a different concentration technique.

Magnetic separation is typically used in high-grade iron ore beneficiation, where the dominant iron minerals are ferro and paramagnetic. Vlažno i suvo magnetno odvajanje niskog intenziteta (LIMS) techniques are used to process ores with strong magnetic properties, such as magnetite, while wet high-intensity magnetic separation is used to separate the Fe-bearing minerals with weak magnetic properties, such as hematite, from gangue minerals. Iron ores such as goethite and limonite are commonly found in tailings and do not separate very well by either technique.

iron ore

Flotacija se koristi za smanjenje sadržaja nečistoća u rudama gvožđa nižeg razreda. Rude gvožđa se mogu koncentrisati ili direktnom anionom flotacijom oksida gvožđa ili obrnutom cationic flotacijom silikona; Međutim, reverse cationic flotation remains the most popular flotation route used in the iron industry. The use of flotation is limited by the cost of reagents, the presence of silica and alumina-rich slimes, and the presence of carbonate minerals. Pored toga, flotation requires wastewater treatment and the use of downstream dewatering for dry final applications.

The use of flotation for the concentration of iron also involves desliming, as floating in the presence of fines results in decreased efficiency and high reagent costs. Desliming je posebno kritičan za uklanjanje aluminijuma jer je odvajanje gibsita od hematita ili goetita od strane bilo kog površinski aktivnog agenta prilično teško. Most alumina-bearing minerals occur in the finer size range (<20Hm), omogućavanje njegovog uklanjanja kroz destimulatisanje. Ukupna, visoka koncentracija novčanih kazni (<20Hm) a aluminijum povećava potrebnu dozu cationic collectora i drastično smanjuje selektivnost. Zbog toga, desliming increases flotation efficiency but results in a large volume of tailings and in loss of iron to the tailings stream.

Suva obrada rude gvožđa predstavlja priliku za eliminisanje troškova i vlažnih kroja generacija povezanih sa flotacionim i vlažnim magnetnim separacionim sklopovima. STET has evaluated several iron ore tailings and run-of-mine ore samples at bench scale (Skala izvodljivosti pre izvodljivosti). Primećeno značajno kretanje gvožđa i silikata, sa primerima istaknutim u tabeli ispod.

screen-shot-new

Rezultati ove studije pokazali su da se kazne za rudu gvožđa nižeg razreda mogu nadograditi pomoću STET tribo-elektrostatičkog separatora pojasa. Zasnovano na STET iskustvu, oporavak proizvoda i/ili ocena će se značajno poboljšati u obradi pilotske skale, u poređenju sa test uređajem na klupi koji je korišćen tokom ovih ispitivanja rude gvožđa.

STET suvi elektrostatički fino odvajanje rude gvožđa Proces nudi mnoge prednosti u odnosu na tradicionalne metode mokre obrade, kao što su magneti ili flotacija, Uključujući:

  • Nema potrošnje vode. Eliminisanje vode takođe eliminiše, zadebljanje, i sušenje, kao i sve troškove i rizike vezane za tretman i odlaganje vode.
  • Nema otpadaka. Nedavni kvarovi brana visokog profila istakli su dugoročni rizik skladištenja mokrih kroja. Po potrebi, prerada minerala Operacije proizvode jalovinu neke vrste, ali STET elektrostatički separator jalovina je bez vode i hemikalija. This allows for easier and more beneficial re-use of the tailings. Polovi koji se trebaju uskladištiti mogu se pomešati sa malom zapreminom vode za kontrolu prašine.
  • No chemical addition is required. Hemikalije za flotacije su tekući radni troškovi za operacije prerade minerala.
  • Pogodno za obradu lepih prašina. Deslimiranje možda neće biti potrebno u zavisnosti od mineralogije i ocene ruda.
  • Niži troškovi investicije (CAPEX) i donji radni troškovi (KOJA).
  • Lakoća dozvoljavanja zbog umanjenog uticaja na životnu sredinu, eliminacija tretmana vodom

 

Kontaktirajte nas da biste saznali više o Suva obrada rude gvožđa.

Reference:

 

  • Lu, L. (Ed.). (2015), "Gvozdena ruda: Mineralogija, Processing, and Environmental Sustainability,” Elsevier.
  • Ferreira, H., & Leite, M. G. P. (2015), “A Life Cycle Assessment study of iron ore mining,” Journal of cleaner production, 108, 1081-1091.
  • Li, Q., Dai, T., Wang, Konta GK., Cheng, J., Žong, W., Wen, B., & Liang, L. (2018), "Analiza toka gvožđa za proizvodnju, Potrošnje, i trgovinu u Kini od 2010 do 2015", Dnevnik čistije proizvodnje, 172, 1807-1813.
  • Nogueira, P. V., Rocha, M. P., Borges, W. R., Silva, A. M., & de Assis, L. M. (2016), "Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil,” Journal of Applied Geophysics, 133, 116-122.
  • Filippov, L. O., Severov, V. V., & Filipova, Ja. V. (2014), “An overview of the beneficiation of iron ores via reverse cationic flotation,” International journal of mineral processing, 127, 62-69.
  • Rosière, C. A., & Brunnacci-Ferreira-Santos, N. "Dolomitic Itabirites and Generations of Carbonates in the Cauê Formation, Quadrilátero Ferrífero".
  • Sahoo, H., Rete, S. S., Rao, D. S., Mišra, B. K., & Das, B. (2016), “Role of silica and alumina content in the flotation of iron ores,” International Journal of Mineral Processing, 148, 83-91.
  • Luo, X., Wang, Y., Wen, S., Mama, M., Sunce, C., Jin, W., & Mama, Y. (2016), “Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores,” International Journal of Mineral Processing, 152, 1-6.
  • Jang, K. O., Nunna, V. R., Hapugoda, S., Nguyen, A. V., & Bruckard, W. J. (2014), “Chemical and mineral transformation of a low-grade goethite ore by dehydroxylation, smanjenje prženja i magnetnog razdvajanja", Inženjering minerala, 60, 14-22.
  • Da Silva, F. L., Araújo, F. G. S., Teixeira, M. P., Gomeš, R. C., & Fon Kriger, F. L. (2014), “Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic,” Ceramics International, 40(10), 16085-16089.
  • mirkowska, M., Kratzer, M., Teichert, C., & Flachberger, H. (2016), "Principal Factors of Contact Charging of Minerals for a Successful Triboelectrostatic Separation Process–a Review", Hauptfaktoren der Triboaufladung von Mineralphasen für eine erfolgreiche elektrostatische Trennung–ein Überblick. BHM Berg-und Hüttenmännische Monatshefte, 161(8), 359-382.
  • Ferguson, D. N. (2010), “A basic triboelectric series for heavy minerals from inductive electrostatic separation behavior,” Journal of the Southern African Institute of Mining and Metallurgy, 110(2), 75-78.
  • Fuerstenau, M. C., & Han, K. N. (Eds.). (2003), “Liquid-Solid Separation,” Principles of mineral processing, MSP.

Frequently Asked Questions

What are the processes of iron ore beneficiation?

Iron ore beneficiation involves a series of processes that aim to improve the purity and quality of raw iron ore. These processes include crushing, grinding, magnetno razdvajanje, SkIoni, and gravity separation, depending on the mineralogical characteristics of the ore. Each technique is selected based on the ore’s composition and feasibility to extract the maximum amount of iron while minimizing impurities.

What equipment is used in iron ore mining?

Iron ore mining requires specialized equipment to handle the extraction and processing of ore. Common machinery includes ball mills for grinding, crushers for reducing the size of ore, magnetic separators for separating iron particles from impurities, flotation machines for fine particle separation, and conveyors for transport.

What technologies are used for iron ore beneficiation?

Technologies utilized for iron ore beneficiation include advanced techniques such as dry electrostatic separation, SkIoni, advanced gravity separation, and sensor-based sorting. These technologies aim to efficiently increase the iron content and eliminate contaminants, catering to the growing demand for high-grade iron ore and promoting sustainable mining practices.

How much does iron ore beneficiation cost?

The cost of iron ore beneficiation can vary significantly depending on the specific processes and technologies used, the grade of the raw ore, and the desired purity of the final product. It encompasses capital expenditure (CAPEX), such as equipment and plant construction, and operational expenditure (KOJA), including labor, Energije, i potrošna. It’s essential for companies to evaluate these costs against prospective revenue and market demands to ensure project viability.

 

Informativni bilteni

Književnost