November 13, 2015

Triboelectrostatic Beneficiation of Land Filled and Ponded Fly Ash

  • Literature
  • $
  • Triboelectrostatic Beneficiation of Land Filled and Ponded Fly Ash

Download PDF

1.7+ billion tons of fly ash are primarily found in landfills or ponded impoundments…and 40 million tons of fly ash continue to be disposed of annually. …interest in recovering this disposed material has increased, partially due to the demand for high-quality fly ash for concrete and cement production during a period of reduced production as coal-fired power generation has decreased in Europe and North America. Concerns about the long-term environmental impact of such landfills are also prompting utilities to find beneficial use applications for this stored ash.

PREPRINT- article to be published in ACAA Ash at Work, Issue II 2015

By Lewis Baker, Abhishek Gupta, Stephen Gasiorowski, and Frank Hrach

The American Coal Ash Association (ACAA) annual survey of production and use of coal fly ash reports that between 1966 and 2011, over 2.3 billion short tons of fly ash have been produced by coal-fired utility boilers.1 Of this amount approximately 625 million tons have been beneficially used, mostly for cement and concrete production. However, the remaining 1.7+ billion tons are primarily found in landfills or filled ponded impoundments. While utilization rates for freshly generated fly ash have increased considerably over recent years, with current rates near 45%, approximately 40 million tons of fly ash continue to be disposed of annually. While utilization rates in Europe have been much higher than in the US, considerable volumes of fly ash have also been stored in landfills and impoundments in some European countries.

Recently, interest in recovering this disposed material has increased, partially due to the demand for high-quality fly ash for concrete and cement production during a period of reduced production as coal-fired power generation has decreased in Europe and North America. Concerns about the long-term environmental impact of such landfills are also prompting utilities to find beneficial use applications for this stored ash.

LAND FILLED ASH QUALITY AND REQUIRED BENEFICIATION

While some of this stored fly ash may be suitable for beneficial use as initially excavated, the vast majority will require some processing to meet quality standards for cement or concrete production. Since the material has been typically wetted to enable handling and compaction while avoiding airborne dust generation, drying and deagglomeration is a necessary requirement for use in concrete since concrete producers will want to continue the practice of batching fly ash as a dry, fine powder. However, assuring the chemical composition of the ash meets specifications, most notably the carbon content measured as loss-on-ignition (LOI), is a greater challenge. As fly ash utilization has increased in the last 20+ years, most “in-spec” ash has been beneficially used, and the off-quality ash disposed. Thus, LOI reduction will be a requirement for utilizing the vast majority of fly ash recoverable from utility impoundments.

LOI REDUCTION BY TRIBOELECTRIC SEPARATION

While other researchers have used combustion techniques and flotation processes for LOI reduction of recovered landfilled and ponded fly ash, ST Equipment & Technologies (STET) has found that its unique triboelectrostatic belt separation system, long used for beneficiation of freshly generated fly ash, is also effective on recovered ash after suitable drying and deagglomeration.

STET researchers have tested the triboelectrostatic separation behavior of dried landfilled ash from several fly ash landfills in the Americas and Europe. This recovered ash separated very similarly to freshly generated ash with one surprising difference: the particle charging was reversed from that of fresh ash with the carbon charging negative in relation to the mineral.2 Other researchers of electrostatic separation of fly ash carbon have also observed this phenomena.3,4,5 The polarity of the STET triboelectrostatic separator can easily be adjusted to allow rejection of negatively charged carbon from dried landfilled fly ash sources. No special modifications to the separator design or controls are necessary to accommodate this phenomena.

TECHNOLOGY OVERVIEW – FLY ASH CARBON SEPARATION

In the STET carbon separator (Figure 1), material is fed into the thin gap between two parallel planar electrodes. The particles are triboelectrically charged by interparticle contact. The positively charged carbon and the negatively charged mineral (in freshly generated ash that has not been wetted and dried) are attracted to opposite electrodes. The particles are then swept up by a continuous moving belt and conveyed in opposite directions. The belt moves the particles adjacent to each electrode toward opposite ends of the separator. The high belt speed also enables very high throughputs, up to 36 tonnes per hour on a single separator. The small gap, high voltage field, counter current flow, vigorous particle-particle agitation and self-cleaning action of the belt on the electrodes are the critical features

PREPRINT- article to be published in ACAA Ash at Work, Issue II 2015

of the STET separator. By controlling various process parameters, such as belt speed, feed point, and feed rate, the STET process produces low LOI fly ash at carbon contents of less than 1.5 to 4.5% from feed fly ashes ranging in LOI from 4% to over 25%.

Fig. 1 STET Separator processing dried, landfilled fly ash

The separator design is relatively simple and compact. A machine designed to process 40 tons per hour is approximately 30 ft. (9 m.) long, 5 ft. (1.5 m.) wide, and 9 ft., m (2.75 m.) high. The belt and associated rollers are the only moving parts. The electrodes are stationary and composed of an appropriately durable material. The belt is made of non-conductive plastic. The separator’s power consumption is about 1 kilowatt-hour per tonne of material processed with most of the power consumed by two motors driving the belt.

The process is entirely dry, requires no additional materials other than the fly ash and produces no waste water or air emissions. The recovered materials consist of fly ash reduced in carbon content to levels suitable for use as a pozzolanic admixture in concrete, and a high carbon fraction useful as fuel. Utilization of both product streams provides a 100% solution to fly ash disposal problems.

PROASH® RECOVERED FROM LAND FILLS

Four sources of ash were obtained from landfills: sample A from a power plant located in the United Kingdom and samples B, C, and D from the United States. All these samples consisted of ash from the combustion of bituminous coal by large utility boilers. Due to the intermingling of material in the landfills, no further information is available concerning specific coal source or combustion conditions.

The samples as received by STET contained between 15% and 27% water as is typical for landfilled material. The samples also contained varying amounts of large >1/8 inch (~3 mm) material. To prepare the samples for carbon separation, the large debris was removed by screening and the samples then dried and deagglomerated prior to carbon beneficiation. Several methods for drying/deagglomeration have been evaluated at the pilot-scale in order to optimize the overall process. STET has selected an industrially proven, feed processing system that offers simultaneous drying and deagglomeration necessary for effective electrostatic separation. A general process flow sheet is presented in Figure 2.

PREPRINT- article to be published in ACAA Ash at Work, Issue II 2015

Figure 2: Process Flow Diagram

The properties of the prepared samples were well within the range of fly ash obtained directly from normal utility boilers. The most relevant properties for both the separator feeds and products are summarized in Table 2 along with recovered product.

CARBON SEPARATION

Carbon reduction trials using the STET triboelectric belt separator resulted in very good recovery of low LOI products from all four landfill fly ash sources. The reverse charging of the carbon as discussed above did not degrade the separation in any way as compared to processing fresh ash.

The properties of the low LOI fly ash recovered using the STET process for both freshly collected ash from the boiler and ash recovered from the landfill is summarized in Table 1. The results show that the product quality for ProAsh® produced from landfilled material is equivalent to product produced from fresh fly ash sources.

Table 1: Properties of feed and recovered ProAsh®.

Feed Sample to Separator

LOI

ProAsh LOI®

ProAsh® Fineness, % +325 mesh

ProAsh® Mass Yield

Fresh A

10.2 %

3.6 %

23 %

84 %

Landfill A

11.1 %

3.6 %

20 %

80 %

Fresh B

5.3 %

2.0 %

13 %

86 %

Landfill B

7.1 %

2.0 %

15 %

65 %

Fresh C

4.7%

2.6%

16%

82%

Landfill C

5.7%

2.5%

23%

72 %

Landfill D

10.8 %

3.0 %

25 %

80 %

PREPRINT- article to be published in ACAA Ash at Work, Issue II 2015

PERFORMANCE IN CONCRETE

The properties of the ProAsh® generated from the reclaimed landfill material were compared to that of ProAsh® produced from fresh fly ash generated by the utility boilers from the same location. The processed reclaimed ash meets all the specifications of ASTM C618 and AASHTO M250 standards. The following table summarizes the chemistry for samples from two of the sources showing the insignificant difference between the fresh and reclaimed material.

Table 2: Ash Chemistry of low LOI ash.

Material Source

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

SO3

Fresh B

51.60

24.70

9.9

2.22

0.85

2.19

0.28

0.09

Landfilled B

50.40

25.00

9.3

3.04

0.85

2.41

0.21

0.11

Fresh C

47.7

23.4

10.8

5.6

1.0

1.9

1.1

0.03

Landfilled C

48.5

26.5

11.5

1.8

0.86

2.39

0.18

0.02

Strength development of a 20% substitution of the low LOI fly ash in a mortar containing 600 lb cementitious/ yd3 (See Table 3 below) showed the ProAsh® product derived from landfilled ash yielded mortars with strength comparable to mortars produced using ProAsh® from fresh fly ash produced at the same location. The end product of the beneficiated reclaimed ash would support high end uses in the concrete industry consistent with the highly valuable position ProAsh® enjoys in the markets it currently serves.

Table 3: Compressive strength of mortar cylinders.

7 day Compressive Strength, % of fresh ash control

28 day Compressive Strength, % of fresh ash control

Fresh B

100

100

Landfilled B

107

113

Fresh C

100

100

Landfilled C

97

99

PROCESS ECONOMICS

The availability of low cost natural gas in the USA greatly enhances the economics of drying processes, including the drying of wetted fly ash from landfills. Table 4 summarizes the fuel costs for operations in the USA for 15% and 20% moisture contents. Typical inefficiencies of drying are included in the calculated values. Costs are based on the mass of material after drying. The incremental costs for drying fly ash for STET triboelectrostatic separation processing are relatively low.

Table 4: Drying costs on basis of dried mass.

Moisture content

Heat Requirement KWhr/T wet basis

Drying cost / T dry basis (Nat Gas cost $3.45 / mmBtu)

15 %

165

$ 2.28

20 %

217

$ 3.19

PREPRINT- article to be published in ACAA Ash at Work, Issue II 2015

Even with the addition of feed drying costs, the STET separation process offers a low cost, industrially proven, process for LOI reduction of landfilled fly ash. The STET process for reclaimed fly ash is one-third to one-half of the capital cost compared to combustion based systems. The STET process for reclaimed fly ash also has significantly lower emissions to the environment compared to combustion or flotation based systems. Since the only additional air emission source to the standard STET process installation is a natural gas-fired dryer, permitting would be relatively simple.

RECOVERED FUEL VALUE OF HIGH-CARBON FLY ASH

In addition to the low carbon product for use in concrete, brand named ProAsh®, the STET separation process also recovers otherwise wasted unburned carbon in the form of carbon-rich fly ash, branded EcoTherm. EcoThermhas significant fuel value and can easily be returned to the electric power plant using the STET EcoTherm™ Return system to reduce the coal use at the plant. When EcoThermis burned in the utility boiler, the energy from combustion is converted to high pressure / high temperature steam and then to electricity at the same efficiency as coal, typically 35%. The conversion of the recovered thermal energy to electricity in ST Equipment & Technology LLC EcoTherm™ Return system is two to three times higher than that of the competitive technology where the energy is recovered as low-grade heat in the form of hot water which is circulated to the boiler feed water system. EcoThermis also used as a source of alumina in cement kilns, displacing the more expensive bauxite which is usually transported long distances. Utilizing the high carbon EcoThermash either at a power plant or a cement kiln, maximizes the energy recovery from the delivered coal, reducing the need to mine and transport additional fuel to the facilities.

STET’s Talen Energy Brandon Shores, SMEPA R.D. Morrow, NBP Belledune, RWEnpower Didcot, EDF Energy West Burton, RWEnpower Aberthaw, and the Korea South-East Power fly ash plants all include EcoTherm™ Return systems.

STET ASH PROCESSING FACILITIES

STET’s separation process has been used commercial since 1995 for fly ash beneficiation and has generated over 20 million tons of high quality fly ash for concrete production. Controlled low LOI fly ProAsh®, is currently produced with STET’s technology at eleven power stations throughout the U.S., Canada, the U.K., Poland, and Republic of Korea. ProAsh® fly ash has been approved for use by over twenty state highway authorities, as well as many other specification agencies. ProAsh® has also been certified under Canadian Standards Association and EN 450:2005 quality standards in Europe. Ash processing facilities using STET technology are listed in Table 5.

PREPRINT- article to be published in ACAA Ash at Work, Issue II 2015

Table 5. Fly Ash Processing facilities using STET separation technology

Utility / Power Station

Location

Start of Commercial operations

Facility Details

Duke Energy – Roxboro Station

North Carolina USA

Sept. 1997

2

Separators

Talen Energy – Brandon Shores Station

Maryland USA

April 1999

2

Separators 35,000 ton storage dome. EcothermReturn 2008

ScotAsh (Lafarge / ScottishPower Joint Venture) – Longannet Station

Scotland UK

Oct. 2002

1

Separator

Jacksonville Electric Authority – St. John’s River Power Park, FL

Florida USA

May 2003

2

Separators Coal/Petcoke blends Ammonia Removal

South Mississippi Electric Power Authority R.D. Morrow Station

Mississippi USA

Jan. 2005

1

Separator EcothermReturn

New Brunswick Power Company Belledune Station

New Brunswick, Canada

April 2005

1

Separator Coal/Petcoke Blends EcothermReturn

RWE npower Didcot Station

England UK

August 2005

1

Separator EcothermReturn

Talen Energy Brunner Island Station

Pennsylvania USA

December 2006

2

Separators 40,000 Ton storage dome

Tampa Electric Co. Big Bend Station

Florida USA

April 2008

3

Separators, double pass 25,000 Ton storage dome Ammonia Removal

RWE npower Aberthaw Station (Lafarge Cement UK)

Wales UK

September 2008

1

Separator Ammonia Removal EcothermReturn

EDF Energy West Burton Station (Lafarge Cement UK, Cemex)

England UK

October 2008

1

Separator EcothermReturn

ZGP (Lafarge Cement Poland / Ciech Janikosoda JV)

Poland

March 2010

1

Separator

Korea South-East Power Yeongheung Units 5&6

South Korea

September 2014

1

Separator EcothermReturn

PGNiG Termika-Siekierki

Poland

Scheduled 2016

1

Separator

ZAK -Energo Ash

Poland

Scheduled 2016

1

Separator

PREPRINT- article to be published in ACAA Ash at Work, Issue II 2015

CONCLUSIONS

After suitable scalping of large material, drying, and deagglomeration, fly ash recovered from utility plant landfills can be reduced in carbon content using the commercialized STET triboelectric belt separator. The quality of the fly ash product, ProAsh® using the STET system on reclaimed landfill material is equivalent to ProAsh® produced from fresh feed fly ash. The ProAsh® product is very well suited and proven in concrete production. The recovery and beneficiation of landfilled ash will provide a continuing supply of high quality ash for concrete producers in spite of the reduced production of “fresh” ash as coal-fired utilities reduce generation. Additionally, power plants that need to remove ash from landfills to meet changing environmental regulations will be able to utilize the process to alter a waste product liability into a valuable raw material for concrete producers. The STET separation process with feed pre-processing equipment for drying and deagglomerating landfilled fly ash is an attractive option for ash beneficiation with significantly lower cost and lower emissions compared to other combustion and flotation based systems.

REFERENCES

[1]American Coal Ash Coal Combustion products and Use Statistics: http://www.acaa- usa.org/Publications/Production-Use-Reports.

[2]ST internal report, August 1995.

[3]Li,T.X,. Schaefer, J.L., Ban, H., Neathery, J.K., and Stencel, J.M. Dry Beneficiation Processing of Combustion Fly Ash, Proceedings of the DOE Conference on Unburned Carbon on Utility Fly Ash, May 19 20, Pittsburgh, PA, 1998.

[4]Baltrus, J.P., Diehl, J.R., Soong, Y., Sands, W. Triboelectrostatic separation of fly ash and charge reversal, Fuel 81, (2002) pp.757-762.

[5]Cangialosi, F., Notarnicola, M., Liberti, L, Stencel, J. The role of weathering on fly ash charge distribution during triboelectrostatic beneficiation, Journal of Hazardous Materials, 164 (2009) pp.683-688.

AUTHORS

Lewis Baker is the European Technical Support Manager for ST Equipment & Technology (STET) based in the United Kingdom

Abhishek Gupta is a Process Engineer based at the Separation Technologies pilot plant and lab facility, STET Technical Center, 101 Hampton Ave, Needham MA 02494 +1-781-972-2300

Dr. Stephen Gasiorowski, Ph.D. is a Senior Research Scientist for ST Equipment & Technology (STET) based in the New Hampshire.

Frank Hrach is Vice President of Process Engineering based at the Separation Technologies pilot plant and lab facility, STET Technical Center, 101 Hampton Ave, Needham MA 02494 +1-781-972-2300

Fly Ash

Minerals

Animal Feed

Human Food

Jose Rivera Ortiz

Production and Development Manager

Jose Rivera-Ortiz joined the company in 2004 as a Manufacturing Mechanical Technician. Over the years he took on many roles and responsibilities in the research and development and service and engineering departments. Jose is now the Manager of Production and Development as well as the Field Service Manager, and is responsible for manufacturing and production, field service, and product development. He holds many patents for STET belt development and equipment upgrades. Previous to joining STET Jose lived in Puerto Rico and worked as a chemical technician.

Lewis Baker

Service Manager

Lewis Baker provides engineering support to STET's fleet of processing plants throughout Europe and Asia and handles technical aspects of business development. He joined ST in 2004, initially as Plant Manager for STET's fly ash processing facility at Didcot Power Station in the UK, before moving to a broader role in technical support. After graduating from the University of Wales with a master’s degree in chemical engineering, Lewis held a number of roles in plant design and commissioning, process engineering, and plant management.

Kamal Ghazi

Senior Project Manager

Kamal Ghazi is a Project Manager with experience in mineral processing and industrial project implementation. He also collaborates closely with clients to ensure the successful integration of the STET Separator into their operations. Kamal joined STET in July 2015 as a Process Engineer and participated in designing and establishing the first-ever landfilled fly ash processing plant for Titan America in 2020. A mineral engineer by education, he earned a master’s degree from Tehran University and a bachelor’s degree from Kerman University.

Scott Mechler

Senior Mechanical Engineer

Scott Mechler is responsible for mechanical design work on STET’s electrostatic separator machines, focused primarily on research and development of new generations of separators. He joined the company in 2024 after a decade of experience in designing large high-tech industrial equipment in highly regulated design environments. Scott received a bachelor’s degree in mechanical engineering, with a minor in biomechanical engineering, from Northeastern University.

Traci Geer

Office Manager

Traci Geer is responsible for the daily operations of the STET office, facility management, marketing, special events, and safety. She also provides support to the leadership team, staff, and human resources. She joined the company in 2017 after having worked as an executive assistant to the Superintendent of a virtual public school. Earlier, she spent a decade as an IT system analyst. Traci earned a bachelor’s degree in computer information systems and an associate’s degree in management from Bentley University.

Tim Choi

Electrical and Controls Engineering Manager

Tim Choi is the Electrical and Controls Engineering Manager at STET. He joined the company in 2017 as a Senior Electrical and Controls Engineer. Since then, he has contributed to developing control systems for separators, commissioning various balance of plant systems, and working on equipment development at the Needham facility. Tim has been in a managerial role since 2021. He holds a bachelor’s degree in electrical engineering from Hanyang University in Korea and a master’s degree in electrical engineering from the University of Texas at Arlington.

Richard Lane

Pilot Plant and Laboratory Technician

Richard Lane, who has been with STET for more than 13 years, is responsible for analyzing daily pilot plant run samples in the lab. He also helps prepare, mill, condition, and organize samples to be run in the pilot plant. After so many years working with STET technology in the pilot plant, Rich has gained an intimate knowledge of the machines along with vast experience with the separation processes. He received an associate’s degree in applied science from Massasoit.

Kristin Cappello

Operations Manager

Kristin Cappello joined the company in 2014 as a Purchasing and Accounting manager, added Materials Manager to her role, and became the Operations Manager in 2022. She is responsible for supply chain management, inventory and purchasing, customer relations, and operation planning. Previous to 2014, Kristin worked as an Office Manager and Executive Assistant in a corporate/family law firm and as a part-time Real Estate Agent. She received her bachelor’s degree in political science/pre-law from Northeastern University.

Kelsie Garretson

Lead Chemist

Kelsie Garretson is responsible for the daily operations of the STET lab, including testing, instrument maintenance and upkeep, and data collection. Some of the instruments she manages include protein analyzers, near-infrared (NIR) spectrometers, and X-ray fluorescent (XFR) analyzers.

She joined STET in 2021 after graduating from Boston University with a bachelor’s degree in earth and environmental science, with a minor in marine science. She is currently pursuing a master’s degree in natural resources and environmental science from the University of Illinois at Urbana-Champaign.

Tom Newman

Process Engineer

Tom Newman joined STET in 2022, handling the day-to-day operation of minerals testing. He designs experiments, analyzes data, optimizes results, and writes reports to provide insights to customers. Tom often travels with STET’s containerized unit to provide on-site support for mineral enrichment projects. He also works on research and development projects to find new ways to improve and understand the triboelectrostatic process. He received a bachelor’s degree in chemical engineering from the University of Pittsburgh. As part of his role at STET, he attends conferences to share his research findings with peers in the mineral processing industry.

Natsuki Barber

Senior Food Technologist

Natsuki Barber is responsible for human food and animal feed customer projects as well as R&D in those areas, especially managing research collaboration. Before joining STET in 2019, Natsuki worked as a food scientist with the Northern Crop Institute, where she developed deep understanding of crop physiology, functionality, application, processing, and nutrition. She worked especially closely with the development and application of plant protein ingredients.. She holds a bachelor’s degree in food science and a master’s degree in cereal science, both from North Dakota State University.

Abhishek Gupta

Director of Process Engineering

Abhishek Gupta leads bench and pilot-scale test programs to develop novel applications of STET electrostatic separation technology. He also manages auxiliary equipment selection, process design, separator installation, and optimization for commercialized applications. Abhishek joined STET in 2014 as a process engineer. Before that, he worked at QD Vision, a nanotechnology company working with semiconductor crystals called Quantum Dots, to develop display and lighting products. He is a chemical engineer by education with a bachelor’s degree in chemical engineering from the Indian Institute of Technology (IIT) and a master’s degree in chemical engineering from Penn State University.

Tomasz Wolak

Director, Business Development

 Tomasz Wolak is working to introduce STET technology for animal feed and human food industries outside the United States and for fly ash and minerals industries in Europe. Tomasz originally joined STET in 2019 as a Business Development Manager for Europe, focusing on human food and animal feed applications. He has worked in the food and feed industries in both engineering and operational roles, gaining insight on design, engineering, and manufacturing as well as operating and optimizing processing plants. Tomasz earned a master’s degree in mechanical engineering from the University of Science and Technology in Cracov and an executive MBA from Apsley Business School in London, and he participated in an advanced management and leadership program at Rotterdam School of Management.

Kyle Flynn

Director, Business Development
Kyle Flynn is responsible for STET business activities in North America, as well as providing technical support to business development activities worldwide. He joined STET in 2008 as a member of the process engineering group. He has worked closely with customers and the pilot plant to develop projects worldwide for the processing of food and feed materials, industrial minerals, and fly ash using the patented dry STET technology. Kyle has assisted in commissioning multiple industrial mineral and fly ash separators, as well as research and development, process design and process optimization. Beginning in 2018, Kyle joined the business development team. Kyle received a bachelor’s degree in chemical engineering from Worcester Polytechnic Institute (WPI) and a master’s degree in chemical engineering from North Carolina State University.

Hervé Guicherd

Vice President, Business Development

Since 2018, Hervé Guicherd has served as Vice President of Business Development for STET, responsible for building, animating, and supporting the business development team. He has assumed many roles during his more than quarter century with the company, including International Business Development Director in charge of introducing STET products in new applications (e.g., mining) and new territories outside the Americas (e.g., India, East Asia); European Business Development Manager (based in Greece); and positions in supply chain and marketing. After an early career as a Navy Officer, Hervé held several positions in marketing and sales during his long involvement with technology-related companies. He received a business degree from the University of Bordeaux; a master’s degree in electrical engineering from the Institute Polytechnique of Bordeaux; and an MBA from the Darden Graduate School of Business at the University of Virginia.

Lou Comis

Controller
Lou Comis has been responsible for all aspects of financial analysis for STET since joining the company in 2017. Previously, Lou held controller positions at Siemens Medical, for the PLM R&D division, and at Draeger Medical. Immediately before joining STET he was a consultant working with companies migrating from Oracle’s Enterprise to Hyperion Financial Management. He began his career as a financial analyst and finance manager for companies including WR Grace, Polaroid, and Siemens Healthcare. Lou earned an MBA with a concentration in finance from Bentley University’s Elkin B. McCallum Graduate School of Business.

David Schaefer

Vice President of Engineering and Manufacturing
David Schaefer is responsible for the manufacturing division and the design and build of STET’s patented electrostatic separation equipment. He works closely with the company’s commercial and processing teams to enhance STET’s customer experience and help drive innovation. David has more than 30 years of engineering and manufacturing leadership experience in technology and product development in everything from multifunction printers to self-driving vehicle technology. Additionally, he has consulted for several startup operations and founded an energy technology development company, eWindSolutions. Earlier in his career, he was director of mechanical engineering and chief new product architect at Xerox and a staff engineer in product development at IBM. His deep experience with innovation-driven technology and leading end-to-end engineering programs helps drive the entrepreneurial spirit of STET. David earned a bachelor’s degree in mechanical engineering from Rochester Institute of Technology. He holds multiple patents in the areas of product performance improvement, cost reductions, and usability improvements

Frank Hrach

Chief Technology Officer
As Chief Technology Officer for STET, Frank Hrach is responsible for STET process technology development for fly ash and industrial minerals, and design, construction, and commissioning of new processing facilities. He joined STET in 1995, bringing over 25 years of experience in research & development, design & construction, and operation of specialty chemical, material handling, and high temperature combustion processes. Before becoming CTO, he served as Director of Process Engineering. Frank received a bachelor’s degree in chemical engineering and a master’s degree in chemical engineering practice from the Massachusetts Institute of Technology.

Tom Cerullo

President
“Leading a unique mix of technology and business development individuals, my job is to help customers gain more value from their processes and products. Notably, our niche is to create value from waste and by-product streams. Sustainability is in our DNA, viewing near-zero waste as a reality within our reach. “While our separation technology is recognized for delivering products of high value in cement, minerals, and protein for humans and animals, entering new markets requires addressing the needs of many stakeholders and achieving buy-in from private and public organizations. This demands a comfort level with the big picture and opening minds to new endeavors. Projects take vision and commitment to bring to fruition, and that’s why our staying power, backed by Titan Cement, an international cement and technology leader, is necessary for continuous success.” Tom Cerullo’s leadership roles at STET began in operations, sales, and business development. At the start of his career, he managed STET’s early commercial installations, the first of which was commissioned in 1995. He has helped drive the growth and evolution of the business from startup to the viable commercial business it is today. Tom is a graduate of the Massachusetts Maritime Academy, which provides a unique education for professionals entering the merchant marine, the military services, and the global marketplace. Before joining STET, he spent more than 4 ½ years as a marine engineer with Military Sealift Command. Adds Tom, “A rigorous academic program, combined with a regimented lifestyle at a young age, gave me a foundation for taking responsibility, having the discipline to endure long-term challenges, and persevering  through complex challenges.”