Triboelectrostatic Beneficiation din depozitul cenuși zburătoare WOCA 2015

Triboelectrostatic separation has been used for the commercial beneficiation of coal combustion fly ash to produce a low carbon product for use as a cement replacement in concrete for nearly twenty years…. STET pe patentat separare electrostatica a fost folosit pentru a produce peste 15 Milioane de tone de emisii reduse de carbon produs... Legislaţia recentă de mediu... cuplat cu o cerinţă.. .la goale depozitele istorice, a creat nevoia de a dezvolta un proces pentru a beneficia punct de vedere istoric depozitate cenuşă...

Descarca PDF
Triboelectrostatic-beneficiation-of-landfilled-fly-ash-WOCA-2015

Triboelectrostatic Beneficiation of

Land Filled Fly Ash

L. Baker, ADRIAN. Gupta, şi S. Gasiorowski

Echipament de ST & Tehnologii SRL, 101 Hampton Avenue, Needham MA 02494 STATELE UNITE ALE AMERICII

Conferinţă: 2015 Lume de cenuşă de cărbune- (www.worldofcoalash.org)

CUVINTE CHEIE: Triboelectrostatic, Beneficiation, Cenuși zburătoare, Landfilled, Dried, Separarea, Carbon

REZUMAT

Triboelectrostatic separation has been used for the commercial beneficiation of coal combustion fly ash to produce a low carbon product for use as a cement replacement in concrete for nearly twenty years. Cu 18 separatoare în 12 centrale electrice pe bază de cărbune din întreaga lume, Echipament de ST & Tehnologie SRL (STET) separator electrostatic patentat a fost utilizat pentru a produce peste 15 Milioane de tone de produs cu emisii scăzute de dioxid de carbon.

Până în prezent, commercial beneficiation of fly ash has been performed exclusively on dry “run of station‿ ash. Recent environmental legislation has created, in certain markets, a need to supply beneficiated ash in times of low ash generation. Acest lucru, coupled with a requirement in some locations to empty historical ash landfill sites, has created the need to develop a process to beneficiate historically landfilled ash.

Previous studies have shown that the exposure of fly ash to moisture, and subsequent drying influences the triboelectrostatic charging mechanism, with carbon and mineral particles charging in the opposite polarity to that experienced with run of station ash. Studies have been performed by the authors to determine the effect of moisture exposure on separation efficiency of several ashes that have been reclaimed from landfills and dried. Charge reversal was experienced following drying, but overall separation efficiency was achieved equivalent to that experienced with fresh run of station ash.

The effect of dried ash feed relative humidity on triboelectrostatic separation efficiency was examined, and sensitivity was greatly reduced compared to that experienced with run of station ash, lowering overall process costs.

Introducere

American cărbune cenuşă Asociaţiei (ACAA) anchetă anuală de producție și utilizarea cărbunelui cenuși zburătoare rapoarte că între 1966 şi 2011, peste 2.3 billion short tons of fly ash have been produced by coal-fired utility boilers.1 Of this amount approximately 625 milioane de tone au fost utilizate efectiv, cea mai mare parte pentru producţia de ciment si beton. Cu toate acestea, rămase 1.7+ billion tons are primarily found in landfills or filled ponded

impoundments. În timp ce ratele de utilizare pentru cenușa zburătoare proaspăt generată au crescut considerabil în ultimii ani, cu rate curente aproape 45%, aproximativ 40 million tons of fly ash continue to be disposed of annually. În timp ce ratele de utilizare în Europa au fost mult mai mari decât în SUA, de asemenea, au fost depozitate volume considerabile de cenușă zburătoare în depozitele de deșeuri și în sechestrele din unele țări europene.

Recent, interest in recovering this disposed material has increased, partially due to the demand for high-quality fly ash for concrete and cement production during a period of reduced production as coal-fired power generation has decreased in Europe and North America. Concerns about the long-term environmental impact of such landfills are also prompting utilities to find beneficial use applications for this stored ash.

LAND FILLED ASH QUALITY AND REQUIRED BENEFICIATION

While some of this stored fly ash may be suitable for beneficial use as initially excavated, the vast majority will require some processing to meet quality standards for cement or concrete production. Since the material has been typically wetted to enable handling and compaction while avoiding airborne dust generation, drying will probably be a minimal requirement for use in concrete since concrete producers will want to continue the practice of batching fly ash as a dry powder. Cu toate acestea, assuring the chemical composition of the ash meets specifications, most notably the carbon content measured as loss-on-ignition (LOI), is a greater challenge. As fly ash utilization has increased in the last 20+ ani, most “in-spec‿ ash has been beneficially used, and the off-quality ash disposed. Thus, LOI reduction will be a requirement for utilizing the vast majority of fly ash recoverable from utility impoundments.

LOI REDUCTION BY TRIBOELECTRIC SEPARATION

While various workers have used combustion techniques and flotation processes for LOI reduction of recovered landfilled and ponded fly ash, Echipament de ST & Technologies (STET) has found that its standard processing system, long used for beneficiation of freshly generated fly ash, is equally effective on recovered ash after suitable drying and deagglomeration at lower overall operating costs.

During the ramp-up to commercial application of the STET processing system for fly ash, STET researchers tested the separation of dried landfilled ash. This recovered ash separated very similarly to freshly generated ash with one surprising difference: the particle charging was reversed from that of fresh ash with the carbon charging negative in relation to the mineral.2 Other researchers of electrostatic separation of fly ash carbon have also observed this phenomena.3,4,5

ST Equipment & Technology

PREZENTARE GENERALĂ A TEHNOLOGIEI – SEPARAREA CARBONULUI DE CENUȘĂ DE ZBOR

În separatorul de carbon STET (Figura 1), materialul este alimentat în decalajul subţire între doi electrozi plane paralele. Particulele sunt practicate triboelectrically de interparticle contact. Carbonul încărcat pozitiv și mineralul încărcat negativ (în cenușă proaspăt generată care nu a fost udată și uscată) sunt atrase de electrozi opusi. Particulele sunt apoi măturat printr-o centură în mişcare continuă şi transmisă în directii opuse. Centura se mută particule adiacent la fiecare electrod spre capetele opuse ale separatorul. Viteza mare, de asemenea, permite cererea foarte mare, până la 36 tone pe oră pe un singur separator. Spațiu liber mic, câmp de înaltă tensiune, contra fluxul de curent, viguros de particule-particule agitaţie şi auto-curatare de acţiune a centurii pe electrozii sunt caracteristici critice separatorului STET. Prin controlul diverse parametrii de proces, cum ar fi viteza curelei, feed punct, şi hrana pentru animale rata, procesul de STET produce mici LOI cenuși zburătoare la conţinutul de carbon mai mică 1.5 pentru a 4.5% la feed zbura cenuşă variind în LOI din 4% la peste 25%.

Fig. 1 STET Separator

Separatorul de proiectare este relativ simplu şi compact. O maşină concepute pentru a prelucra 36 tone pe oră este de aproximativ 9 m (30 ft.) lung, 1.5 m (5 ft.) largă, şi 2.75 m (9 ft.) mare. Curea si role asociate sunt doar piesele mobile. Electrozii sunt staționari și compus dintr-un material durabil în mod corespunzător. The belt is made of non- conductive plastic. Consumul de energie al separatorului este de aproximativ 1 kilowaţi-oră pe tonă de material procesat cu cea mai mare parte a puterii consumate de doua motoare centura de conducere.

Procesul este complet uscat, necesită nici materiale suplimentare, altele decât cenuși zburătoare şi produce fără emisii reziduale de apa sau aer. The recovered materials consist of fly ash reduced in carbon content to levels suitable for use as a pozzolanic admixture in

beton, şi o fracţiune de carbon de înaltă utile drept combustibil. Utilizarea a două fluxuri de produs oferă o 100% soluţie pentru problemele de eliminare cenuși zburătoare.

VALOAREA COMBUSTIBILULUI RECUPERAT AL CENUȘII ZBURĂTOARE CU EMISII RIDICATE DE CARBON

În plus față de produsul cu emisii scăzute de carbon pentru utilizarea în beton, brand numit ProAsh®, separarea STET procesa, de asemenea, Recupereaza pierdut altfel nearse de carbon sub formă de bogate în carbon cenuși zburătoare, marcă EcoTherm. EcoThermare valoare semnificativa de combustibil şi cu uşurinţă pot fi returnate centralei electrice folosind STET EcoTherm™ Sistem de returnare pentru a reduce utilizarea cărbunelui la uzină. Atunci când EcoThermeste ars în cazan de utilitate, energia de ardere este convertit la presiune inalta / abur de temperatură ridicată şi apoi la electricitate la aceeaşi eficienţă ca cărbune, de obicei 35%. Conversia energiei termice recuperate în energie electrică în echipamente ST & Tehnologie LLC EcoTherm™ Sistem de retur este două-trei ori mai mare decât cea a tehnologiei competitiv, în cazul în care energiei este recuperată, grad scăzut de căldură sub formă de apă fierbinte, care este circulat la cazan apa sistem de alimentare. EcoThermeste de asemenea folosit ca o sursă de alumină în cuptoarele de ciment, deplasarea bauxită mai scump, care este, de obicei, transportat distanţe lungi. Utilizand EcoTherm ridicat de carboncenuşă, fie la o centrala sau un cuptor de ciment, Maximizează recuperare de energie de cărbune livrate, reduce necesitatea de a mea si combustibil suplimentare la facilităţile de transport.

STET’s Raven Power Brandon Shores, RALUK SMEPA. Morrow, CORNEL Belledune, RWEnpower Didcot, FED energie Burton vest, și RWEnpower Aberthaw zbura plante de cenușă, Toate includ EcoTherm™ Sisteme de returnare. Componentele esenţiale ale sistemului sunt prezentate în figura 2.

ST Equipment & Technology

Fig. 2 EcoThermSistem de retur

STET ASH PROCESING FACILITIES

Controlat scăzut LOI zbura cenușă este produs cu tehnologia STET la douăsprezece centrale electrice din ÎNTREAGA SUA., Canada, Marea Britanie, Polonia, and Republic of Korea. ProAsh® cenușă zburătoare a fost aprobată pentru utilizare de peste douăzeci de autorități rutiere de stat, precum și multe alte agenții de specificații. ProAsh® a fost, de asemenea, certificată în conformitate cu Canadian Standards Association și EN 450:2005 standardele de calitate în Europa. Instalațiile de prelucrare a cenușii care utilizează tehnologia STET sunt enumerate în tabelul 1.

Tabel 1. Operațiuni comerciale STET

Utilitate / Centrală electrică

Locația

Începerea operațiunilor comerciale

Detalii facilitate

Progress Energy – Stația Roxboro

Carolina de Nord Statele Unite ale Americii

Septembrie. 1997

2 Separatoare

Raven Power – Stația Brandon Shores

Maryland Statele Unite ale Americii

Aprilie 1999

2 Separatoare 35,000 tonă de stocare cupolă. Ecothermrestitui 2008

ScotAsh (Lafarge / Scottish Power Joint Venture) – Stația Longannet

Scoția Marea Britanie

Oct. 2002

1 Separator

Jacksonville Autoritatea Electrică – St. John's River Power Park,fl

Florida Statele Unite ale Americii

Poate 2003

2 Separators Coal/Petcoke blends Ammonia Removal

South Mississippi Electric Power Authority R.D. Stația Morrow

Mississippi Statele Unite ale Americii

Jan. 2005

1 Separator Ecothermrestitui

Stația Belledune a companiei energetice New Brunswick

Noul Brunswick, Canada

Aprilie 2005

1 Separator Coal/Petcoke Blends Ecothermrestitui

Stația RWE npower Didcot

Anglia Marea Britanie

August 2005

1 Separator Ecothermrestitui

Stația PPL Brunner Island

Pennsylvania Statele Unite ale Americii

Decembrie 2006

2 Separatoare 40,000 Cupola de depozitare tonă

Tampa Electric Co. Stația Big Bend

Florida Statele Unite ale Americii

Aprilie 2008

3 Separatoare, trecere dublă 25,000 Tonă de depozitare dome amoniac Eliminarea

RWE npower Stația Aberthaw (Lafarge Ciment Marea Britanie)

Țara Galilor Marea Britanie

Septembrie 2008

1 Separator Ammonia Removal Ecothermrestitui

Stația EDF Energy West Burton (Lafarge Ciment Marea Britanie, Cemex)

Anglia Marea Britanie

Octombrie 2008

1 Separator Ecothermrestitui

ZGP (Lafarge Ciment Polonia / Ciech Janikosoda JV)

Polonia

Martie 2010

1 Separator

Korea South-East Power Yeongheung Units 5&6

Coreea de Sud

Septembrie 2014

1 Separator Ecothermrestitui

COAL ASH RECOVERED FROM LAND FILLS

Two sources of ash were obtained from landfills: sample A from a power plant located in

the United Kingdom and sample B: from the United States. Both these samples consisted of ash from the combustion of bituminous coal by large utility boilers. Due to the intermingling of material in the landfills, no further information is available concerning specific coal source or combustion conditions.

ST Equipment & Technology

The samples as received by STET contained between 15% şi 20% water as is typical for landfilled material. The samples also contained varying amounts of large >1/8 inch (~3 mm) material. To prepare the samples for carbon separation, the large debris was removed by screening and the samples then dried and deagglomerated prior to carbon beneficiation. Various methods for drying/deagglomeration are being evaluated in order to optimize the overall process. A general process flow sheet is presented in Figure 3.

Figura 3: Process flow sheet

The properties of the prepared samples were well within the range of fly ash obtained directly from normal utility boilers. The most relevant properties for both the separator feeds and products are summarized in Table 2 along with recovered product.

CARBON SEPARATION

Carbon reduction trials using the STET triboelectric belt separator resulted in very good recovery of low LOI product. The interesting phenomena observed was the reversal of charging of the carbon discussed above. While this behavior has been observed previously by STET and other researchers, the mechanism that changes the relative work functions and thus contact charging behavior of the material is not understood. One suggested mechanism is the redistribution of soluble ions on the mineral and

ST Equipment & Technology

carbon particles, possibly further influenced by the pH of the aqueous solution on the ash4. Whatever the fundamental mechanism is, it does not appear to degrade the practical application of triboelectric separation to reduce the carbon content of the ash.

The properties of the low LOI fly ash recovered using the STET process for both freshly collected ash from the boiler and ash recovered from the landfill is summarized in Table

2.The results show that the STET process efficiency for the recovered landfill ash is within the range expected for ash freshly collected from the utility boiler.

Tabel 2: Properties of feed and recovered low-LOI ash.

Feed Sample to Separator

LOI

ProAsh LOI®

ProAsh Fineness, %® +45 µm

ProAsh® Mass Yield

EcoTherm® High Carbon Product

Fresh A

10.2 %

3.6 %

23 %

84 %

39 %

Landfill A

9.8 %

3.3 %

20 %

75 %

28 %

Fresh B

5.3 %

2.8 %

17 %

91 %

28 %

Landfill B

6.9 %

4.5 %

24 %

86 %

26 %

PROCESS ECONOMICS

In addition to the normal costs of the STET process, the cost of drying the recovered, high moisture content ash will increase the overall operating costs of the process. Tabel 3 summarizes the fuel costs for both operations in the USA and UK for 15% şi 20% moisture contents. Typical inefficiencies of drying are included in the calculated values. Costs are based on the mass of material after drying.

Tabel 3: Drying costs on basis of dried mass.

Moisture content Heat Requirement KWhr/t Drying cost / T dry basis UK Drying cost / T dry basis US
Gas cost 0.027 £/kWhr Gas cost $4.75 / mmBtu
15 % 165 £ 5.24 £ 1.94
£ 8.48 £ 3.14
£ 6.73 £ 2.49
20 % 217 £ 7.23 £ 2.71
£ 11.85 £ 4.39
£ 9.40 £ 3.48

ASH CHEMISTRY AND PERFORMANCE IN CONCRETE

The properties of the low carbon ash generated from the dried landfill material were compared to that of freshly obtained ash to check the suitability for use in concrete production. De asemenea,

following table summarizes the chemistry for samples from source B. Testing on source A material has not been completed.

Tabel 4: Ash Chemistry of low LOI ash.

Source B material

SiO2

Al2O3

Fe2O3

CaO

Mgo

K2O

Na2O

SO3

Fresh Production

51.60

24.70

9.9

2.22

0.85

2.19

0.28

0.09

Landfilled

50.40

25.00

9.3

3.04

0.85

2.41

0.21

0.11

Strength development of a 20% substitution of the low LOI fly ash in a mortar containing 600 Lb / yd3 showed the material derived from landfilled ash performed somewhat better than material from fresh production. A se vedea tabelul 5 Sub.

Tabel 5: Compressive strength of mortar cubes.

7 day Compressive Strength PSI

28 day Compressive Strength PSI

Fresh

3948

5185

Landfilled

4254

5855

Concluziile

After suitable scalping of large material, drying, and deagglomeration, fly ash recovered from utility plant landfills can be reduced in carbon content using the commercialized STET triboelectric belt separator. The efficiency of the STET system is essentially equivalent for ashes obtained freshly from boiler operations and dried landfilled material. The separator product is suitable for use in concrete production without further beneficiation with nearly identical performance properties. The recovery and beneficiation of landfilled ash will provide a continuing supply of high quality ash for concrete producers in spite of the reduced production of “fresh‿ ash as coal-fired utilities reduce generation. Suplimentar, power plants that need to remove ash from landfills to meet changing environmental regulations will be able to utilize the process to alter a waste product liability into a valuable raw material for concrete producers.

Referinţe

[1]American cărbune ash cărbune produse de ardere și statistici de utilizare: https://www.acaa-usa.org/Publications/Production-Use-Reports/

[2]ST internal report, August 1995.

[3]Li,T.X,. Schaefer, J.L., Ban, H., Neathery, J.K., and Stencel, J.M. Dry Beneficiation Processing of Combustion Fly Ash, Proceedings of the DOE Conference on Unburned Carbon on Utility Fly Ash, Poate 19 20, Pittsburgh, PA, 1998.

[4]Baltrus, J.P., Diehl, J.R., Soong, Y., Sands, W. Triboelectrostatic separation of fly ash and charge reversal, Fuel 81, (2002) pp.757-762.

[5]Cangialosi, F., Notarnicola, M., Liberti, L, Stencel, J. The role of weathering on fly ash charge distribution during triboelectrostatic beneficiation, Journal of Hazardous Materials, 164 (2009) pp.683-688.

Word to PDF Converter Converted By BCLTechnologies